DOI QR코드

DOI QR Code

APPROXIMATING COMMON FIXED POINTS OF ONE-STEP ITERATIVE SCHEME WITH ERROR FOR NON-SELF ASYMPTOTICALLY NONEXPANSIVE IN THE INTERMEDIATE SENSE MAPPINGS

  • Saluja, Gurucharan Singh (DEPARTMENT OF MATHEMATICS & INFORMATION TECHNOLOGY GOVT. NAGARJUN P.G. COLLEGE OF SCIENCE) ;
  • Nashine, Hemant Kumar (DEPARTMENT OF MATHEMATICS DISHA INSTITUTE OF MANAGEMENT AND TECHNOLOGY SATYA VIHAR, VIDHANSABHA-CHANDRAKHURI MARG)
  • Received : 2009.02.21
  • Accepted : 2010.04.19
  • Published : 2010.05.31

Abstract

In this paper, we study a new one-step iterative scheme with error for approximating common fixed points of non-self asymptotically nonexpansive in the intermediate sense mappings in uniformly convex Banach spaces. Also we have proved weak and strong convergence theorems for above said scheme. The results obtained in this paper extend and improve the recent ones, announced by Zhou et al. [27] and many others.

Keywords

References

  1. R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically non- expansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179. https://doi.org/10.4064/cm-65-2-169-179
  2. S. S. Chang, Y. J. Cho and H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), no. 6, 1245-1260.
  3. C. E. Chidume, On the approximation of xed points of nonexpansive mappings, Hous- ton J. Math. 7 (1981), 345-355.
  4. C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms. In: Agarwal R.P., O'Reagan D.eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, 383- 430.
  5. C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), 364-374. https://doi.org/10.1016/S0022-247X(03)00061-1
  6. C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. Submitted.
  7. C. E. Chidume, E. U. Ofoedu and H. Zegeye, Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numer. Funct. Opt. 25 (2004), no. 3-4, 239-257.
  8. K. Goebel and W. A. Kirk, A xed point theorem for asymptotically nonexpansive map- pings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
  9. S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
  10. S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
  11. W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically non- expansive type, Israel J. Math. 17 (1974), 339-346. https://doi.org/10.1007/BF02757136
  12. W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506- 510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
  13. Robert E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag New York, 1998.
  14. W. Nilsrakoo and S. Saejung, A new three-step xed point iteration scheme for asymp- totically nonexpansive mapping, Appl. Math. Comput. 181 (2006), 1026-1034. https://doi.org/10.1016/j.amc.2006.01.063
  15. Z. Opial, Weak convergence of the sequence of successive approximatins for nonexpan- sive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
  16. M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for xed points of asymptotically nonexpansive mappings, Math. Comput. Mod. 32 (2000), 1181- 1191. https://doi.org/10.1016/S0895-7177(00)00199-0
  17. G. B. Passty, Construction of xed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), 212-216. https://doi.org/10.1090/S0002-9939-1982-0637171-7
  18. S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
  19. B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994), 118-120. https://doi.org/10.1006/jmaa.1994.1135
  20. J. Schu, Iterative construction of xed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413. https://doi.org/10.1016/0022-247X(91)90245-U
  21. J. Schu,, Weak and strong convergence theorems to xed points of asymptotically non- expansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
  22. J. Schu,, The nonlinear ergodic theorem for asymptotically nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc. 114 (1992), 399-404. https://doi.org/10.1090/S0002-9939-1992-1068133-2
  23. J. Schu,, Approximating xed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
  24. H. F. Senter and W. G. Dotson, Approximating xed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
  25. K. K. Tan and H. K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36. https://doi.org/10.1017/S0004972700036972
  26. K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739. https://doi.org/10.1090/S0002-9939-1994-1203993-5
  27. H. Y. Zhou, Y. J. Cho and S. M. Kang, A new iteration algorithm for approximating common xed points for asymptotically nonexpansive mappings, Fixed Point Theory and Applications, Vol. 2007, Article ID 64874, 10 pages.