References
- R. E. Bruck, T. Kuczumow and S. Reich, Convergence of iterates of asymptotically non- expansive mappings in Banach spaces with the uniform Opial property, Colloq. Math. 65 (1993), 169-179. https://doi.org/10.4064/cm-65-2-169-179
- S. S. Chang, Y. J. Cho and H. Zhou, Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. Korean Math. Soc. 38 (2001), no. 6, 1245-1260.
- C. E. Chidume, On the approximation of xed points of nonexpansive mappings, Hous- ton J. Math. 7 (1981), 345-355.
- C. E. Chidume, Nonexpansive mappings, generalizations and iterative algorithms. In: Agarwal R.P., O'Reagan D.eds. Nonlinear Analysis and Application. To V. Lakshmikantam on his 80th Birthday (Research Monograph), Dordrecht: Kluwer Academic Publishers, 383- 430.
- C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. Math. Anal. Appl. 280 (2003), 364-374. https://doi.org/10.1016/S0022-247X(03)00061-1
- C. E. Chidume, E. U. Ofoedu and H. Zegeye, Strong convergence theorems for nonexpansive mappings in arbitrary Banach spaces, Nonlinear Anal. Submitted.
- C. E. Chidume, E. U. Ofoedu and H. Zegeye, Convergence theorems for mappings which are asymptotically nonexpansive in the intermediate sense, Numer. Funct. Opt. 25 (2004), no. 3-4, 239-257.
- K. Goebel and W. A. Kirk, A xed point theorem for asymptotically nonexpansive map- pings, Proc. Amer. Math. Soc. 35 (1972), 171-174. https://doi.org/10.1090/S0002-9939-1972-0298500-3
- S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc. 44 (1974), 147-150. https://doi.org/10.1090/S0002-9939-1974-0336469-5
- S. Ishikawa, Fixed points and iteration of a nonexpansive mapping in a Banach space, Proc. Amer. Math. Soc. 59 (1976), 65-71. https://doi.org/10.1090/S0002-9939-1976-0412909-X
- W. A. Kirk, Fixed point theorems for non-Lipschitzian mappings of asymptotically non- expansive type, Israel J. Math. 17 (1974), 339-346. https://doi.org/10.1007/BF02757136
- W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506- 510. https://doi.org/10.1090/S0002-9939-1953-0054846-3
- Robert E. Megginson, An Introduction to Banach Space Theory, Springer-Verlag New York, 1998.
- W. Nilsrakoo and S. Saejung, A new three-step xed point iteration scheme for asymp- totically nonexpansive mapping, Appl. Math. Comput. 181 (2006), 1026-1034. https://doi.org/10.1016/j.amc.2006.01.063
- Z. Opial, Weak convergence of the sequence of successive approximatins for nonexpan- sive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597. https://doi.org/10.1090/S0002-9904-1967-11761-0
- M. O. Osilike and S. C. Aniagbosor, Weak and strong convergence theorems for xed points of asymptotically nonexpansive mappings, Math. Comput. Mod. 32 (2000), 1181- 1191. https://doi.org/10.1016/S0895-7177(00)00199-0
- G. B. Passty, Construction of xed points for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 84 (1982), 212-216. https://doi.org/10.1090/S0002-9939-1982-0637171-7
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl. 67 (1979), 274-276. https://doi.org/10.1016/0022-247X(79)90024-6
- B. E. Rhoades, Fixed point iteration for certain nonlinear mappings, J. Math. Anal. Appl. 183 (1994), 118-120. https://doi.org/10.1006/jmaa.1994.1135
- J. Schu, Iterative construction of xed points of asymptotically nonexpansive mappings, J. Math. Anal. Appl. 158 (1991), 407-413. https://doi.org/10.1016/0022-247X(91)90245-U
- J. Schu,, Weak and strong convergence theorems to xed points of asymptotically non- expansive mappings, Bull. Austral. Math. Soc. 43 (1991), 153-159. https://doi.org/10.1017/S0004972700028884
- J. Schu,, The nonlinear ergodic theorem for asymptotically nonexpansive mapping in Banach spaces, Proc. Amer. Math. Soc. 114 (1992), 399-404. https://doi.org/10.1090/S0002-9939-1992-1068133-2
- J. Schu,, Approximating xed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309
- H. F. Senter and W. G. Dotson, Approximating xed points of nonexpansive mappings, Proc. Amer. Math. Soc. 44 (1974), 375-380. https://doi.org/10.1090/S0002-9939-1974-0346608-8
- K. K. Tan and H. K. Xu, A nonlinear ergodic theorem for asymptotically nonexpansive mappings, Bull. Austral. Math. Soc. 45 (1992), 25-36. https://doi.org/10.1017/S0004972700036972
- K. K. Tan and H. K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739. https://doi.org/10.1090/S0002-9939-1994-1203993-5
- H. Y. Zhou, Y. J. Cho and S. M. Kang, A new iteration algorithm for approximating common xed points for asymptotically nonexpansive mappings, Fixed Point Theory and Applications, Vol. 2007, Article ID 64874, 10 pages.