• 제목/요약/키워드: Many-body interaction

검색결과 89건 처리시간 0.025초

Near-body Interaction Enhancement with Distance Perception Matching in Immersive Virtual Environment

  • Yang, Ungyeon;Kim, Nam-Gyu
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.111-120
    • /
    • 2021
  • As recent virtual reality technologies provide a more natural three-dimensional interactive environment, users naturally learn to explore space and interact with synthetic objects. The virtual reality researcher develops a technique that realizes realistic sensory feedback to get appropriate feedback to sense input behavior. Although much recent virtual reality research works extensively consider the human factor, it is not easy to adapt to all new virtual environment contents. Among many human factors, distance perception has been treated as very important in virtual environment interaction accuracy. We study the experiential virtual environment with the feature of the virtual object connected with the real object. We divide the three-dimensional interaction, in which distance perception and behavior have a significant influence, into two types (whole-body movement and direct manipulation) and analyze the real and virtual visual distance perception heterogeneity phenomenon. Also, we propose a statistical correction method that can reduce a near-body movement and manipulation error when changing the interaction location and report the experiment results proving its effectiveness.

간략화된 유체 표면모델을 이용한 강체와 유체의 상호작용 시뮬레이션 (Interactive Simulation between Rigid body and Fluid using Simplified Fluid-Surface Model)

  • 김은주
    • 한국멀티미디어학회논문지
    • /
    • 제12권2호
    • /
    • pp.323-328
    • /
    • 2009
  • 게임이나 가상현실 등에서 사용자들에게 사실성과 몰입 감을 주기 위해서 자연 현상들을 시뮬레이션하고 있다. 게임이나 가상현실에서 물이나 바다와 같은 유체를 3차원으로 시뮬레이션 하는데 있어서 중요한 요소는 실시간 처리와 사실성이다. 유체 모델은 특정 상황에 따른 다양한 방정식과 많은 파라미터 값에 의해 제어되기 때문에 시뮬레이션 하는데 많은 어려움이 따른다. 또한 복잡한 물리 수식을 기반으로 하기 때문에 유체 모델을 시뮬레이션하기 위해서는 많은 수행 시간이 소요된다. 본 논문에서는 실시간 유체와 강체(rigid body) 사이의 상호작용을 표현하기 위해 간략화 된 유체 표면 모델(Fluid-Surface Model)을 제안하고, 개선된 계산과정을 통해 보다 빠르게 시뮬레이션 하도록 한다. 또한 본 논문에서는 유체의 표면과 강체의 상호작용을 표현하는데 있어서 유체의 항력에 의해서 강체와 충돌 시 발생하는 유체 표면의 움직임을 나타낸다. 본 논문에서 제안하는 자연스러운 유체 표면 모델은 유체역학적 방법을 사용하여 실시간에 사실적으로 표현된다. 그리고 이러한 유체 표면 모델을 PC 환경에서 사용자와 상호작용 가능하도록 재현하여, 게임이나 애니메이션에서의 유체 모델들에도 적용할 수 있다.

  • PDF

그림모델과 파티클필터를 이용한 인간 정면 상반신 포즈 인식 (Pictorial Model of Upper Body based Pose Recognition and Particle Filter Tracking)

  • 오치민;;김민욱;이칠우
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2009년도 학술대회
    • /
    • pp.186-192
    • /
    • 2009
  • 본 논문은 비전을 이용한 인간 정면 상반신 포즈를 인식 방법에 대해서 기술한다. 일반적으로 HCI(Human Computer Interaction)와 HRI(Human Robot Interaction)에서는 인간이 정면을 바라볼 때 얼굴, 손짓으로 의사소통 하는 경우가 많기 때문에 본 논문에서는 인식의 범위를 인간의 정면 그리고 상반신에 대해서만 한정한다. 인간 포즈인식의 주요 두 가지 어려움은 첫째 인간은 다양한 관절로 이루어진 객체이기 때문에 포즈의 자유도가 높은 문제점 때문에 모델링이 어렵다는 것이다. 둘째는 모델링된 정보와 영상과의 매칭이 어려운 것이다. 이를 해결하기 위해 본 논문에서는 모델링이 쉬운 그림모델(Pictorial Model)을 이용해 인체를 다수 사각형 파트로 모델링 하였고 이를 이용해 주요한 상반신 포즈를 DB화 해 인식한다. DB 포즈로 표현되지 못하는 세부포즈는 인식된 주요 포즈 파라미터로 부터 파티클필터를 이용해 예측한 다수 파티클로부터 가장 높은 사후분포를 갖는 파티클을 찾아 주요 포즈를 업데이트하여 결정한다. 따라서 주요한 포즈 인식과 이를 기반으로 한 세부 포즈를 추적하는 두 단계를 통해 인체 정면 상반신 포즈를 정확하게 인식 할 수 있다.

  • PDF

A distributed relay selection algorithm for two-hop wireless body area networks

  • Kim, Seung-Ku;Joo, Yang-Ick
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제41권2호
    • /
    • pp.156-162
    • /
    • 2017
  • This paper investigates two-hop extension communication in wireless body area networks. Many previous studies have demonstrated that two-hop extended topology outperforms single-hop topology. Although many researchers have proposed using two-hop extension communication to improve link reliability, no one has considered using a relay selection algorithm or provided a suitable solution for wireless body area networks. The design goal of the proposed algorithm is selecting a proper relay node to retransmit failed packets distributively. The proposed algorithm configures the carrier sensing period to choose one relay node promptly without requiring additional interaction. We analyze the link conditions corresponding to various body postures and investigate which factors are proper to determine the carrier sensing period. The empirical results show that the proposed algorithm reduces the expected number of transmissions required to deliver a packet successfully.

감성공간디자인의 실증적 연구-II (An Empirical Study on Emotional Space Design-II)

  • 오영근
    • 한국실내디자인학회논문집
    • /
    • 제21권1호
    • /
    • pp.103-110
    • /
    • 2012
  • With a theoretical focus on the emotional experiences created via the interface, and the relationship between human beings and space, this study aims to corroborate and clarify the formation and verification of emotional interactions between human beings and space using body movements. It follows the method of Coining "Movement Phrases" through the analysis of body movements in the experimental space, thereby developing them into a complete scenario to produce the story of emotional expression. This study has hereby generated the following outcomes: First, the "pocket-type" exhibition displays a higher frequency of body movements than the "general" exhibition. It has close connections with emotional vocabularies: "Curious," "interesting," "warm," and "fun." The "general" exhibition records a relatively high frequency of emotional vocabularies like "natural," "efficient," and "free." Second, it is possible to analyze the story of space using a scenario, just like drama, based upon attributes and serial relationships. The "exposition" section reveals a high degree of "curiosity" and a large number of body movements, while the "development" section indicates high degree of "surprise" plus slight body movements. The "transition" sections manifest high "interest" and many body movements, and the "climax" section shows a high frequency of "surprise" and many changes in body movements. The "conclusion" section finally invokes images together with body movements.

  • PDF

Structural Stability of High-temperature Butterfly Valve Using Interaction Analysis

  • Lee, Moon-Hee;Son, In-Soo
    • 한국산업융합학회 논문집
    • /
    • 제23권6_1호
    • /
    • pp.881-888
    • /
    • 2020
  • A butterfly valve is a valve that adjusts flow rate by rotating a disc for about 90° with respect to the axis that is perpendicular to the flow path from the center of its body. This valve can be manufactured for low-temperature, high-temperature and high-pressure conditions because there are few restrictions on the used materials. However, the development of valves that can be used in a 600℃ environment is subject to many constraints. In this study, the butterfly valve's stability was evaluated by a fluid-structured interaction analysis, thermal-structure interaction analysis, and seismic analysis for the development of valves that can be used in high-temperature environments. When the reverse-pressure was applied to the valve in the structural analysis, the stress was low in the body and seat compared to the normal pressure. Compared with the allowable strength of the material for the parts of the valve system, the minimum safety factor was approximately 1.4, so the valve was stable. As a result of applying the design pressures of 0.5 MPa and 600℃ under the load conditions in the thermal-structural analysis, the safety factor in the valve body was about 3.4 when the normal pressure was applied and about 2.7 when the reverse pressure was applied. The stability of the fluid-structure interaction analysis was determined to be stable compared to the 600℃ yield strength of the material, and about 2.2 for the 40° open-angle disc for the valve body. In seismic analysis, the maximum value of the valve's stress value was about 9% to 11% when the seismic load was applied compared to the general structural analysis. Based on the results of this study, the structural stability and design feasibility of high-temperature valves that can be used in cogeneration plants and other power plants are presented.

Numerical Simulation of 3D Free-Surface Flows by Using CIP-based and FV-based Methods

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Kim, Yong-Hwan
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.136-143
    • /
    • 2011
  • In this paper, three-dimensional free-surface flows are simulated by using two different numerical methods, the constrained interpolation profile (CIP)-based and finite volume (FV)-based methods. In the CIP-based method, the governing equations are solved on stationary staggered Cartesian grids by a finite difference method, and an immersed boundary technique is applied to deal with wave-body interactions. In the FV-based method, the governing equations are solved by applying collocated finite volume discretization, and body-fitted meshes are used. A free-surface boundary is considered as the interface of the multi-phase flow with air and water, and a volumeof-fluid (VOF) approach is applied to trace the free surface. Among many variations of the VOF-type method, the tangent of hyperbola for interface capturing (THINC) and the compressive interface capturing scheme for arbitrary meshes (CICSAM) techniques are used in the CIP-based method and FV-based method, respectively. Numerical simulations have been carried out for dam-breaking and wave-body interaction problems. The computational results of the two methods are compared with experimental data and their differences are observed.

고속철도 교량의 속도별 주행시험을 통한 교량/열차 상호작용해석의 검증 (Verification Study of Train/Bridge Interaction Analysis through Field Tests of a High Speed Railway Bridge)

  • 김성일;이주범;김현민;이희업
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1555-1561
    • /
    • 2011
  • The dynamic behavior of a bridge under moving loads has been investigated over many years. Especially, with the introduction of High Speed Railway, numerous theoretical studies on the interaction problem between bridges and trains are carried out. In the present study, advanced bridge/train interaction analyses are performed and compared with field tests of a simply-supported 40m long PSC box girder bridge of Kyung-Bu High Speed Railway. Vertical displacements and vertical accelerations of a bridge with increasing speeds are analyzed. In addition, wheel load reduction rates and accelerations of a car-body of the train are investigated for a study of appropriateness of traffic safety criteria of bridge design specification.

  • PDF

Test of a Multi-Reference Many-Body Perturbation Theory for the Description of Electron Correlations in four Valence Electron States of Transition Metal Atoms

  • Lee, Yoon-Sup;Sun, Ho-Sung;Freed, Karl F.;Hagstrom, S.
    • Bulletin of the Korean Chemical Society
    • /
    • 제7권4호
    • /
    • pp.262-266
    • /
    • 1986
  • A multi-reference many-body perturbation theory (MRMBPT) method is critically tested in second order by comparing with the corresponding configuration interaction (CI) calculations. Excitation energies of the four-valence-electron states of transition metal atoms and ions are used for the comparison. The agreement between the second order MRMBPT and CI calculations is very reasonable, confirming the reliability of the second order MRMBPT method. The reliability of calculations with the present second order MRMBPT method was only been inferred empirically in the past since most results have been gauged by the agreement with experiment and/or with other MRMBPT calculations based upon different sets of orbitals and configuration spaces. The present MRMBPT method appears to be an efficient ab initio multi-reference method for the calculation of electron correlation effects in atoms and molecules, and it is shown how MRMBPT can be used to estimate core-core and core-valence correlation effects which are often omitted in CI calculations because too many configurations and correlating electrons are involved.

사용자 경험 증진을 위한 과학관 전시물의 사용성 평가 (A Usability Study On Museum Installations Emphasizing Interaction Design for User Experience)

  • 조명은;최한희;김미정
    • 한국실내디자인학회논문집
    • /
    • 제22권5호
    • /
    • pp.302-310
    • /
    • 2013
  • Many museums have recently employed digital technologies in exhibition installations to provide visitors with interactive experiences with the installations, not just audiences. However, most of them have focused on the adoption of new prototypes or technologies, not considering user experiences of those systems carefully. This study developed an evaluation tool for usability of the tangible user interfaces and conducted a usability study on museum installations emphasizing user interaction and experience. The evaluation tool is composed of 5 features of tangible user interfaces such as tangible, interaction, convenience, representation, spatial interaction and social interaction, and 24 items. The museum we investigated is the Gwacheon National Science Museum, where 8 installations, classified 4 categories, were selected for the usability study. We recruited 6 undergraduate students, who were divided into 2 teams, each team having 3 students. Three students in a team manipulated and experience each installation together and reported their evaluation score through the questionnaire and interviews. The results showed that the score of the usability for the category 3, which requires students to move their bodies for the interaction, is the highest one because it features with spatial interaction. Students expressed much interest in the category 4, which utilizes users' other senses, however, the score of the usability is the lowest because the interaction is temporary and repetitive. Most installations are well designed in terms of control constraints, legibility, lower thresholds, participation encouragement, and open to the public, but pooly designed in terms of multiple access points, configurability, accurate movement, ambient media, and full-body interaction.