• Title/Summary/Keyword: Manufacturing Industrial

Search Result 5,041, Processing Time 0.032 seconds

Analysis of the relationship with the Human Resource in the service economy era according to the type of organization -Focusing on organizational culture and structure - (조직유형에 따른 서비스경제시대 인재상 관계분석 -조직문화와 조직구조를 중심으로-)

  • Baek Kyeong Hui;Kim Hyun Soo
    • Journal of Service Research and Studies
    • /
    • v.11 no.3
    • /
    • pp.98-116
    • /
    • 2021
  • With the advent of the era of the 4th industrial revolution, various factors such as economy, management, and culture are changing in modern society, unlike in the past. Among them, the main characteristic of management is the change from intangible goods to tangible goods, and companies are trying to pursue innovation such as introducing a new management method, converting from manufacturing to service, and expanding technology. However, with regard to human resources, which is becoming the most important for sustainable value creation in a changing era, efforts to enable practical innovation are lacking as they are still in a simple transition. Therefore, in this study, after recognizing the importance of human resources, we verified the relationship between the elements of the human resource in the service economy era according to organizational culture and organizational structure. The relationship between organizational culture and organizational structure by type was verified using the items of human resources, we verified the relationship between the elements of the human resource in the service economy era that were derived and verified in recent research. As a result, there were some significant differences in the image of human resources, we verified the relationship between the elements of the human resource by organizational culture and type of organization, but when the two factors were combined and interpreted, it was found that all of the human resources, we verified the relationship between the elements of the human resource in the service economy era were necessary. However, in order to overcome the limitation that the indicators of this study were limited, it is necessary to continue research through samples that consider various factors in the future and systematic classification by type of organization and industry by industry.

On-site Investigation of Work Cease Rights Conducted by Employers to Ensure Worker Safety (근로자 안전을 확보하기 위해 실시하는 사업주에 의한 작업중지권 현장 실태조사)

  • Woo Sub Shim;Sang Beam Kim
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.806-814
    • /
    • 2023
  • Purpose: According to the Occupational Safety and Health Act of the Ministry of Employment and Labor, in order to prevent industrial accidents, the right to stop work must be exercised in the event of an imminent danger. This study conducted a fact-finding survey on whether employers fulfilled the right to suspend work in the workplace when an imminent danger, such as a typhoon, was encountered. Method: For two days from August 9 to October, when the impact of Typhoon Khanun No. 6 was significant, it was confirmed by wire whether or not the work suspension was carried out at the workplace, and the subjects of the survey were 1,649 construction sites, 830 manufacturing sites, and 278 other industries, for a total of 2,757 sites. Result: As a result of the fact-finding survey, 56% (1,555 locations) on August 9th and 77% (2,142 locations) on August 10th carried out full or partial work suspension. In particular, on August 10, when the typhoon landed, 40% of all workplaces completely stopped work. Conclusion: Through this study, it was confirmed that the right to suspend work by employers is being used in actual workplaces. In the future, when there is an imminent danger, in addition to the right to suspend work, flexible and telecommuting, working hour adjustments, etc. must be actively used to ensure the safety of workers and protect their lives.

Effects of CEO Will and Employee Resistance to Innovation of SMEs on Smart Factory Adoption (중소기업 CEO 의지 및 종업원 혁신 저항성이 스마트 팩토리 도입에 미치는 영향)

  • Kim, Sung-tae;Chung, Byoung-gyu
    • Journal of Venture Innovation
    • /
    • v.5 no.2
    • /
    • pp.111-127
    • /
    • 2022
  • With the progress of the 4th industrial revolution, interest in smart factories is increasing. The government is implementing a smart factory support project for small and medium-sized manufacturing companies. Therefore, in this study, factors influencing small and medium-sized enterprises(SME's) intention of smart factory acceptance were analyzed. In particular, it focused on how the perception of government support affects intention of smart factory acceptance. For the empirical analysis, a research model was established by reflecting the characteristics of SMEs and the technical factors of the smart factory centering on the technology acceptance theory. Based on the model set in this way, a questionnaire survey was conducted for employees of SMEs. In this study, a total of 231 samples of valid data were used for analysis. The empirical analysis results are as follows. It was analyzed that performance expectancy, social influence, technology utilization capability, CEO will, and employee resistance to innovation, all introduced as research variables, had a significant effect on the use intention of smart factory acceptance. In particular, it was found that employees' resistance to innovation had a negative (-) effect on their use intention. Meanwhile, to analyze the moderating effect of government support, it was divided into a group with high expectations for government support and a group with low expectations. As a result, it was found that there was a difference in the effect of CEO's will, employees' resistance to innovation, and social influence on the use intention. On the other hand, no significant difference was found in the relationship between performance expectancy, technology utilization capability on the use intention. Based on the empirical analysis results, the academic and practical implications of this study were presented.

Optimal Abrasion Conditions for Separating Aggregate and Cement paste for Using Waste Concrete Fine Powder as Decarbonization Raw Material (폐콘크리트 미분말을 탈탄산 원료로 사용하기 위한 골재와 시멘트페이스트 분리의 최적 마쇄 조건 분석)

  • Ha-Seog Kim;Min-Chul Lee
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.121-129
    • /
    • 2023
  • In this study, we attempted to reduce CO2 generated during manufacturing by replacing limestone (CaCO3), a carbonate mineral used to produce cement clinker, with a decarbonated raw material to which CO2 is not bound. The raw material for decarbonization was cement paste attached to waste concrete, among various industrial by-products. Waste concrete has cement paste adhered to the aggregate, which cannot be separated efficiently by general crushing and grinding methods. Peeling and grinding methods effectively remove only the cement paste without damaging the original aggregate. The abrasion time, steel ball type, and steel ball ratio were selected as effective factors for Abrasion. An optimal abrasion experiment was conducted to produce waste concrete fine powder containing decarbonated CaO as a cement clinker raw material through an experimental design method. The experiment revealed that the optimal conditions for producing waste concrete fine powder were an abrasion time of 7 minutes, a steel ball size for pulverization of 8 mm, and a steel ball ratio for pulverization of 0.6.

New Yellow Aromatic Imine Derivatives Based on Organic Semiconductor Compounds for Image Sensor Color Filters (이미지 센서 컬러 필터용 유기반도체 화합물 기반의 신규 황색 아로마틱 이민 유도체)

  • Sunwoo Park;Joo Hwan Kim;Sangwook Park;Godi Mahendra;Jaehyun Lee;Jongwook Park
    • Applied Chemistry for Engineering
    • /
    • v.34 no.6
    • /
    • pp.590-595
    • /
    • 2023
  • Novel aromatic imine derivatives with yellow were designed and synthesized for their potential application in color filters for image sensors. The synthesized compounds possessed chemical structures using aromatic imine groups. This innovative material was evaluated thoroughly, considering its optical and thermal properties under conditions similar to commercial device manufacturing processes. Following a rigorous performance evaluation, it was found that (E)-3-methyl-4-((3-methyl-5-oxo-1-phenyl-1H-pyrazol-4(5H)-ylidene)methyl)-1-phenyl-1H-pyrazol-5(4H)-one, abbreviated as MOPMPO, exhibited an impressive solubility of 0.5 wt% in propylene glycol monomethyl ether acetate, predominantly utilized as the solvent in the industry. Furthermore, MOPMPO showed exceptional performance as a color filter material for image sensors, having a high decomposition temperature of 290 ℃. These data unequivocally establish MOPMPO as a viable yellow dye additive for coloring materials in image sensor applications.

A Study on Need for Safe Baseline Isolation Standard for Chemical Plant Equipment (화학공장 설비의 안전한 격리 표준 필요성에 대한 연구)

  • Su-Ji Choi;Sang-Gil Kim;Gyu-Sun Cho
    • Industry Promotion Research
    • /
    • v.8 no.4
    • /
    • pp.37-46
    • /
    • 2023
  • Due to the aging, advancement, and complexity of chemical facilities, non-routine work such as facility inspection, repair, or maintenance work is increasing. Of the 1,483 accidents that occurred over the past 10 years at chemical product manufacturing sites subject to PSM, accidents that occurred during non-routine work accounted for 56% (932 Cases) of the total. It can be seen that more accidents occur during non-routine work than during routine work. In particular, in order to improve the economy and efficiency of factory operation, there are cases where some facilities are stopped without stopping the entire factory and then inspection, repair, or maintenance work is performed while isolated from the operating facilities. Therefore, first, a safe isolation method must be selected by establishing an isolation standard (Baseline Isolation Standard) based on the chemicals handled, operating conditions, and risk level of the equipment in the chemical plant. Second, since current domestic laws and standards do not suggest the need for specific quarantine standards, it is necessary to institutionalize the preparation of quarantine standards. Technical and institutional improvements are needed to prevent fires, explosions, and poisoning accidents caused by leaks of chemical substances.

A Study on Application Methodology of SPDL Based on IEC 62443 Applicable to SME Environment (중소기업환경에서 적용 가능한 IEC 62443 기반의 개발 보안 생애주기 프로세스 적용 방안 연구)

  • Jin, Jung Ha;Park, SangSeon;Kim, Jun Tae;Han, Keunhee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.193-204
    • /
    • 2022
  • In a smart factory environment in a small and medium-sized enterprise (SME) environment, sensors and actuators operating on actual manufacturing lines, programmable logic controllers (PLCs) to manage them, human-machine interface (HMI) to control and manage such PLCs, and consists of operational technology server to manage PLCs and HMI again. PLC and HMI, which are in charge of control automation, perform direct connection with OT servers, application systems for factory operation, robots for on-site automation, and production facilities, so the development of security technology in a smart factory environment is demanded. However, smart factories in the SME environment are often composed of systems that used to operate in closed environments in the past, so there exist a vulnerable part to security in the current environment where they operate in conjunction with the outside through the Internet. In order to achieve the internalization of smart factory security in this SME environment, it is necessary to establish a process according to the IEC 62443-4-1 Secure Product Development Life cycle at the stage of smart factory SW and HW development. In addition, it is necessary to introduce a suitable development methodology that considers IEC 62443-4-2 Component security requirements and IEC 62443-3 System security requirements. Therefore, this paper proposes an application plan for the IEC 62443 based development security process to provide security internalization to smart factories in an SME environment.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).

CaO Optimal Classification Conditions for the Use of Waste Concrete Fine Powder as a Substitute for Limestone in Clinker Raw Materials (폐콘크리트 미분말을 클링커 원료의 석회석 대체재로 사용하기 위한 CaO 최적 분급 조건)

  • Ha-Seog Kim;Sang-Chul Shin
    • Land and Housing Review
    • /
    • v.15 no.1
    • /
    • pp.147-156
    • /
    • 2024
  • This study aims to reduce CO2 generated during the manufacturing process by using limestone (CaCO3), a carbonate mineral used in the production of cement clinker, as a decarbonated raw material that does not contain CO2. Among various industrial by-products, we attempted to use cement paste attached to waste concrete. In general, limestone for cement must have a CaCO3 content of at least 80% (CaO, 44% or more) to ensure the quality of cement clinker. However, the CaO content of waste concrete fine powder is about 20% on average, so in order to use it as a cement clinker raw material, the CaO content must be increased to more than 35%. Therefore, by using the difference in hardness of the mineral composition of waste concrete fine powder to selectively crush CaO type minerals with relatively low hardness, classify and sieve, the CaO content can be increased by more than 35%. Accordingly, in this study, we experimentally and statistically reviewed and analyzed the optimal conditions for efficiently separating CaO and SiO2 and other components by selectively pulverizing minerals containing relatively low CaO through a grinding process. As a result of the optimal grinding conditions experiment, it was found that the optimal conditions were a grinding time of less than 5 minutes, a type of material to be crushed of 30 mm, and an amount of material to be crushed of 1.0 or more. However, it is judged that it is necessary to review pulverized materials of mixed particle sizes rather than pulverized products of single particle size.

Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries (열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성)

  • Dong Ki Kim;Chaehun Lim;Seongjae Myeong;Naeun Ha;Chung Gi Min;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.140-147
    • /
    • 2024
  • In order to increase the utilization of biomass, an electrochemical performance was considered after manufacturing a carbon anode material (SV-C) for a Setaria viridis-based lithium ion secondary battery through a heat treatment process. When the heat treatment temperature of the Setaria viridis is as low as 750 ℃, the capacitance (1003.3 mAh/g, at 0.1 C) is high due to the negative (-) charge of oxygen present on the surface attracting lithium, along with the low crystallinity and high specific surface area (126 m2/g), but the capacity retention rate is believed to be as low as 61.0% (at 500 cycles and 1 C). In addition, it was confirmed that when the heat treatment temperature increased to 1150 ℃, the carbon layer was condensed to be excellent in arrangement, and the structural defects were reduced, resulting in a significant reduction in the specific surface area (32 m2/g) of the pores. Furthermore, when the surface defects of the anode material are reduced and the crystallinity is increased, the capacity retention rate is as high as 89.7% (at 500 cycles and 1 C), but the degree of defects is small, the active point is reduced, and the specific capacity is considered to be very low at 471.7 mAh/g. In the scope of this study, it was found that in the case of the Setaria viridis-based carbon anode material manufactured according to the heat treatment temperature, the surface oxygen content and crystallinity have higher reliability on the electrochemical properties of the anode material than the specific surface area.