• Title/Summary/Keyword: Manufacturing AI

Search Result 163, Processing Time 0.027 seconds

Semiconductor Policies in Major Countries and Implications of Artificial-Intelligence Semiconductor Policies (주요국 반도체 정책과 AI반도체 정책에의 시사점)

  • K.S. Shin;S.J. Koh
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.2
    • /
    • pp.66-76
    • /
    • 2024
  • Artificial-intelligence (AI) semiconductors are crucial for securing national core competitiveness, including dominating the AI and data ecosystem and succeeding in the Digital New Deal. When examining the macroenvironment, the global division of labor in the semiconductor industry has weakened owing to the technological competition between the United States and China. Major countries are aiming to build the entire semiconductor ecosystem around their territories. As a result, these countries are formulating policy goals tailored to their realities and actively pursuing key policies such as research and development, securing manufacturing bases, workforce development, and financial support. These policies also focus on intercountry cooperation and bold government policy support, which is deemed essential. To secure core competitiveness in AI semiconductors, South Korea needs to examine the policy directions of major countries and actively formulate and implement policies for this semiconductor industry.

A Study on Improving the Accuracy of Wafer Align Mark Center Detection Using Variable Thresholds (가변 Threshold를 이용한 Wafer Align Mark 중점 검출 정밀도 향상 연구)

  • Hyeon Gyu Kim;Hak Jun Lee;Jaehyun Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.108-112
    • /
    • 2023
  • Precision manufacturing technology is rapidly developing due to the extreme miniaturization of semiconductor processes to comply with Moore's Law. Accurate and precise alignment, which is one of the key elements of the semiconductor pre-process and post-process, is very important in the semiconductor process. The center detection of wafer align marks plays a key role in improving yield by reducing defects and research on accurate detection methods for this is necessary. Methods for accurate alignment using traditional image sensors can cause problems due to changes in image brightness and noise. To solve this problem, engineers must go directly into the line and perform maintenance work. This paper emphasizes that the development of AI technology can provide innovative solutions in the semiconductor process as high-resolution image and image processing technology also develops. This study proposes a new wafer center detection method through variable thresholding. And this study introduces a method for detecting the center that is less sensitive to the brightness of LEDs by utilizing a high-performance object detection model such as YOLOv8 without relying on existing algorithms. Through this, we aim to enable precise wafer focus detection using artificial intelligence.

  • PDF

Utilization of Forecasting Accounting Earnings Using Artificial Neural Networks and Case-based Reasoning: Case Study on Manufacturing and Banking Industry (인공신경망과 사례기반추론을 이용한 기업회계이익의 예측효용성 분석 : 제조업과 은행업을 중심으로)

  • Choe, Yongseok;Han, Ingoo;Shin, Taeksoo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.81-101
    • /
    • 2003
  • The financial statements purpose to provide useful information to decision-making process of business managers. The value-relevant information, however, embedded in the financial statement has been often overlooked in Korea. In fact, the financial statements in Korea have been utilized for nothing but account reports to Security Supervision Boards (SSB). The objective of this study is to develop earnings forecasting models through financial statement analysis using artificial intelligence (AI). AI methods are employed in forecasting earnings: artificial neural networks (ANN) for manufacturing industry and case~based reasoning (CBR) for banking industry. The experimental results using such AI methods are as follows. Using ANN for manufacturing industry records 63.2% of hit ratio for out-of-sample, which outperforms the logistic regression by around 4%. The experiment through CBR for banking industry shows 65.0% of hit ratio that beats the statistical method by 13.2% in holdout sample. Finally, the prediction results for manufacturing industry are validated through monitoring the shift in cumulative returns of portfolios based on the earning prediction. The portfolio with the firms whose earnings are predicted to increase is designated as best portfolio and the portfolio with the earnings-decreasing firms as worst portfolio. The difference between two portfolios is about 3% of cumulative abnormal return on average. Consequently, this result showed that the financial statements in Korea contain the value-relevant information that is not reflected in stock prices.

Examining the Generative Artificial Intelligence Landscape: Current Status and Policy Strategies

  • Hyoung-Goo Kang;Ahram Moon;Seongmin Jeon
    • Asia pacific journal of information systems
    • /
    • v.34 no.1
    • /
    • pp.150-190
    • /
    • 2024
  • This article proposes a framework to elucidate the structural dynamics of the generative AI ecosystem. It also outlines the practical application of this proposed framework through illustrative policies, with a specific emphasis on the development of the Korean generative AI ecosystem and its implications of platform strategies at AI platform-squared. We propose a comprehensive classification scheme within generative AI ecosystems, including app builders, technology partners, app stores, foundational AI models operating as operating systems, cloud services, and chip manufacturers. The market competitiveness for both app builders and technology partners will be highly contingent on their ability to effectively navigate the customer decision journey (CDJ) while offering localized services that fill the gaps left by foundational models. The strategically important platform of platforms in the generative AI ecosystem (i.e., AI platform-squared) is constituted by app stores, foundational AIs as operating systems, and cloud services. A few companies, primarily in the U.S. and China, are projected to dominate this AI platform squared, and consequently, they are likely to become the primary targets of non-market strategies by diverse governments and communities. Korea still has chances in AI platform-squared, but the window of opportunities is narrowing. A cautious approach is necessary when considering potential regulations for domestic large AI models and platforms. Hastily importing foreign regulatory frameworks and non-market strategies, such as those from Europe, could overlook the essential hierarchical structure that our framework underscores. Our study suggests a clear strategic pathway for Korea to emerge as a generative AI powerhouse. As one of the few countries boasting significant companies within the foundational AI models (which need to collaborate with each other) and chip manufacturing sectors, it is vital for Korea to leverage its unique position and strategically penetrate the platform-squared segment-app stores, operating systems, and cloud services. Given the potential network effects and winner-takes-all dynamics in AI platform-squared, this endeavor is of immediate urgency. To facilitate this transition, it is recommended that the government implement promotional policies that strategically nurture these AI platform-squared, rather than restrict them through regulations and stakeholder pressures.

The Effect of AI Development on the Economic Growth: The Case of South Korea (인공지능산업 발전이 경제성장에 미치는 효과 분석)

  • Dong Jin Lee
    • Analyses & Alternatives
    • /
    • v.8 no.1
    • /
    • pp.59-85
    • /
    • 2024
  • This study examines the impact of the development of the artificial intelligence (AI) industry on the economic growth of South Korea. The study uses variables such as the revenue and patent applications of AI-related companies, as well as industry-specific total factor productivity and GDP, to estimate the effects. The results suggest that the growth of the AI industry has a positive effect on the economic growth with a lag of about one year. Specifically, the effect of government AI revenue on GDP growth appears to be greater than that of private companies or consumer-focused AI revenue. This indicates that government policies aimed at promoting the diffusion of the AI industry have had significant effects. The study notes that the period covered by the AI industry survey data is relatively short, and there is a lack of detailed data for the manufacturing sector. I suggest that further improvements and accumulation of data could lead to more robust results.

The Suggestion for Successful Factory Converging Automation by Reviewing Smart Factories in German (스마트 팩토리 사례를 통한 성공적 공장 융합 자동화 방안 도출)

  • Jeong, Tae-Seog
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.1
    • /
    • pp.189-196
    • /
    • 2016
  • The ultimate goal of this study is to investigate the cases with respect to smart factory that has been introduced by German government. To do this, the study suggest implications for manufacturing version 3.0 that is one of manufacturing revolution agendas in Korea. The main point of smart factory is the convergence between manufacturing and information and communications technologies such as CPS(Cyber-Physical Systems), MES(Manufacturing Execution Systems), 3D Printer, AI(Artificial Intelligence), and so forth. It is hard to accomplish a complete manufacturing automation. In fact, German government had experienced the failure in pursuing the smart factory agenda. But now the agenda is gradually realized by a variety of success stories from German. Thus, this study is to investigate the well-known success stories that came from German.

Development of Workplace Risk Assessment System Based on AI Video Analysis

  • Jeong-In Park
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.151-161
    • /
    • 2024
  • In this paper, we develop 'the Danger Map' of a workplace to identify risk and harmful factors by analyzing images of each process within the manufacturing plant site using artificial intelligence (AI). We proposed a system that automatically derives 'the risk and safety levels' based on the frequency and intensity derived from this Danger Map in accordance with actual field conditions and applies them to similar manufacturing industries. In particular, in the traditional evaluation method of manually evaluating the risk of a workplace using Excel, the risk level for each risk and harmful factor acquired from the video is automatically calculated and evaluated to ensure safety through the system and calculate the safety level, so that the company can take appropriate actions accordingly. and measures were prepared. To automate safety calculation and evaluation, 'Heinrich's law' was used as a model, and a 5X4 point evaluation scale was calculated for risky behavior patterns. To demonstrate this system, we applied it to a casting factory and were able to save 2 people the time and labor required to calculate safety each month.

Class Classification and Validation of a Musculoskeletal Risk Factor Dataset for Manufacturing Workers (제조업 노동자 근골격계 부담요인 데이터셋 클래스 분류와 유효성 검증)

  • Young-Jin Kang;;;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.8 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • There are various items in the safety and health standards of the manufacturing industry, but they can be divided into work-related diseases and musculoskeletal diseases according to the standards for sickness and accident victims. Musculoskeletal diseases occur frequently in manufacturing and can lead to a decrease in labor productivity and a weakening of competitiveness in manufacturing. In this paper, to detect the musculoskeletal harmful factors of manufacturing workers, we defined the musculoskeletal load work factor analysis, harmful load working postures, and key points matching, and constructed data for Artificial Intelligence(AI) learning. To check the effectiveness of the suggested dataset, AI algorithms such as YOLO, Lite-HRNet, and EfficientNet were used to train and verify. Our experimental results the human detection accuracy is 99%, the key points matching accuracy of the detected person is @AP0.5 88%, and the accuracy of working postures evaluation by integrating the inferred matching positions is LEGS 72.2%, NECT 85.7%, TRUNK 81.9%, UPPERARM 79.8%, and LOWERARM 92.7%, and considered the necessity for research that can prevent deep learning-based musculoskeletal diseases.

Prediction for Rolling Force in Hot-rolling Mill Using On-line learning Neural Network (On-line 학습 신경회로망을 이용한 열간 압연하중 예측)

  • Son Joon-Sik;Lee Duk-Man;Kim Ill-Soo;Choi Seung-Gap
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.1
    • /
    • pp.52-57
    • /
    • 2005
  • In the foe of global competition, the requirements for the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties) have imposed a mai or change on steel manufacturing industries. Indeed, one of the keys to achieve this goal is the automation of the steel-making process using AI(Artificial Intelligence) techniques. The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved. In this paper, an on-line training neural network for both long-term teaming and short-term teaming was developed in order to improve the prediction of rolling force in hot rolling mill. This analysis shows that the predicted rolling force is very closed to the actual rolling force, and the thickness error of the strip is considerably reduced.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.