• Title/Summary/Keyword: Man-Hour Computation

Search Result 3, Processing Time 0.015 seconds

A Study on the Man-Hour Computation Based on MODAPTS in Automobile Assembly Line (MODAPTS 기반 자동차 조립공정 공수 산정에 관한 연구)

  • Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.23 no.1
    • /
    • pp.65-70
    • /
    • 2021
  • Domestic as well as global automobile manufacturers are making greater efforts in cost reduction to strengthen the competitiveness. In this study, we developed a program to effectively manage standard time of automobile assembly line, and confirm based on A-automobile factory data. For the purpose, we develop the system which is possible to manage standard time as well as calculate man-hour for automobile assembly line.

A Study on the Material Supply Man-Hour Computation based on MODAPTS in Automobile Assembly Line (MODAPTS 기반 자동차 조립공정 부품공급 공수 산정에 관한 연구)

  • Jang, Jung-Hwan;Jang, Jing-Lun;Quan, Yu;Jho, Yong-Chul;Kim, Yu-Seong;Bae, Sang-Don;Kang, Du-Seok;Lee, Jae-Woong;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.18 no.3
    • /
    • pp.127-135
    • /
    • 2016
  • Korean automobile industrial is in a difficult situation because of more competitive global market and lower demand. Therefore, domestic as well as global automobile manufacturers are making greater efforts in cost reduction to strengthen the competitiveness. According to statistical data, logistics cost in domestic manufacturers is higher than advanced countries. In this study, we developed program to effectively manage standard time of procurement logistics, and confirm based on A-automobile factory data. For the purpose, we develop the system which is possible to manage standard time as well as calculate man-hour. Program is not just for calculating and managing standard man-hour, scenarios analysis function will be added to calculate benefit while introduce logistics automated equipment. In this study we propose scenario using AGV instead of electric motor while move component. In the scenario analysis, job constitution is changed, and then we use system to compare the result. We can confirm standard man-hour is reduced from 22.3M/H to 14.3M/H. In future research, it is necessary scenario analysis function, and develop algorithm with realistic constraint condition.

An Iterative, Interactive and Unified Seismic Velocity Analysis (반복적 대화식 통합 탄성파 속도분석)

  • Suh Sayng-Yong;Chung Bu-Heung;Jang Seong-Hyung
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.1
    • /
    • pp.26-32
    • /
    • 1999
  • Among the various seismic data processing sequences, the velocity analysis is the most time consuming and man-hour intensive processing steps. For the production seismic data processing, a good velocity analysis tool as well as the high performance computer is required. The tool must give fast and accurate velocity analysis. There are two different approches in the velocity analysis, batch and interactive. In the batch processing, a velocity plot is made at every analysis point. Generally, the plot consisted of a semblance contour, super gather, and a stack pannel. The interpreter chooses the velocity function by analyzing the velocity plot. The technique is highly dependent on the interpreters skill and requires human efforts. As the high speed graphic workstations are becoming more popular, various interactive velocity analysis programs are developed. Although, the programs enabled faster picking of the velocity nodes using mouse, the main improvement of these programs is simply the replacement of the paper plot by the graphic screen. The velocity spectrum is highly sensitive to the presence of the noise, especially the coherent noise often found in the shallow region of the marine seismic data. For the accurate velocity analysis, these noise must be removed before the spectrum is computed. Also, the velocity analysis must be carried out by carefully choosing the location of the analysis point and accuarate computation of the spectrum. The analyzed velocity function must be verified by the mute and stack, and the sequence must be repeated most time. Therefore an iterative, interactive, and unified velocity analysis tool is highly required. An interactive velocity analysis program, xva(X-Window based Velocity Analysis) was invented. The program handles all processes required in the velocity analysis such as composing the super gather, computing the velocity spectrum, NMO correction, mute, and stack. Most of the parameter changes give the final stack via a few mouse clicks thereby enabling the iterative and interactive processing. A simple trace indexing scheme is introduced and a program to nike the index of the Geobit seismic disk file was invented. The index is used to reference the original input, i.e., CDP sort, directly A transformation techinique of the mute function between the T-X domain and NMOC domain is introduced and adopted to the program. The result of the transform is simliar to the remove-NMO technique in suppressing the shallow noise such as direct wave and refracted wave. However, it has two improvements, i.e., no interpolation error and very high speed computing time. By the introduction of the technique, the mute times can be easily designed from the NMOC domain and applied to the super gather in the T-X domain, thereby producing more accurate velocity spectrum interactively. The xva program consists of 28 files, 12,029 lines, 34,990 words and 304,073 characters. The program references Geobit utility libraries and can be installed under Geobit preinstalled environment. The program runs on X-Window/Motif environment. The program menu is designed according to the Motif style guide. A brief usage of the program has been discussed. The program allows fast and accurate seismic velocity analysis, which is necessary computing the AVO (Amplitude Versus Offset) based DHI (Direct Hydrocarn Indicator), and making the high quality seismic sections.

  • PDF