International journal of advanced smart convergence
/
제12권1호
/
pp.64-69
/
2023
We devise a collaboration construction method based on the SPRT (Sequential Probability Ratio Test) for malware detection in IoT. In our method, high-end IoT nodes having capable of detecting malware and generating malware signatures harness the SPRT to give a reward of malware signatures to low-end IoT nodes providing useful data for malware detection in IoT. We evaluate our proposed method through simulation. Our simulation results indicate that the number of malware signatures provided for collaboration is varied in accordance with the threshold for fraction of useful data.
International journal of advanced smart convergence
/
제10권3호
/
pp.163-171
/
2021
Recently, Machine Learning-based visualization approaches have been proposed to combat the problem of malware detection. Unfortunately, these techniques are exposed to Adversarial examples. Adversarial examples are noises which can deceive the deep learning based malware detection network such that the malware becomes unrecognizable. To address the shortcomings of these approaches, we present Block-matching and 3D filtering (BM3D) algorithm and deep image prior based denoising technique to defend against adversarial examples on visualization-based malware detection systems. The BM3D based denoising method eliminates most of the adversarial noise. After that the deep image prior based denoising removes the remaining subtle noise. Experimental results on the MS BIG malware dataset and benign samples show that the proposed denoising based defense recovers the performance of the adversarial attacked CNN model for malware detection to some extent.
Lin, Zhaowen;Xiao, Fei;Sun, Yi;Ma, Yan;Xing, Cong-Cong;Huang, Jun
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권4호
/
pp.1799-1818
/
2018
Malware detections continue to be a challenging task as attackers may be aware of the rules used in malware detection mechanisms and constantly generate new breeds of malware to evade the current malware detection mechanisms. Consequently, novel and innovated malware detection techniques need to be investigated to deal with this circumstance. In this paper, we propose a new secure malware detection system in which API call fragments are used to recognize potential malware instances, and these API call fragments together with the homomorphic encryption technique are used to construct a privacy-preserving Naive Bayes classifier (PP-NBC). Experimental results demonstrate that the proposed PP-NBC can successfully classify instances of malware with a hit-rate as high as 94.93%.
International Journal of Computer Science & Network Security
/
제21권6호
/
pp.286-293
/
2021
Recently, the quick development rate of apps in the Android platform has led to an accelerated increment in creating malware applications by cyber attackers. Numerous Android malware detection tools have utilized conventional signature-based approaches to detect malware apps. However, these conventional strategies can't identify the latest apps on whether applications are malware or not. Many new malware apps are periodically discovered but not all malware Apps can be accurately detected. Hence, there is a need to propose intelligent approaches that are able to detect the newly developed Android malware applications. In this study, Radial Basis Function (RBF) networks are trained using known Android applications and then used to detect the latest and new Android malware applications. Initially, the optimal permission features of Android apps are selected using Information Gain Ratio (IGR). Appropriately, the features selected by IGR are utilized to train the RBF networks in order to detect effectively the new Android malware apps. The empirical results showed that RBF achieved the best detection accuracy (97.20%) among other common machine learning techniques. Furthermore, RBF accomplished the best detection results in most of the other measures.
International journal of advanced smart convergence
/
제13권3호
/
pp.41-47
/
2024
In this paper, we deal with a game theoretic problem to explore interactions between evasive Artificial Intelligence (AI) malware and detectors in Internet of Things (IoT). Evasive AI malware is defined as malware having capability of eluding detection by exploiting artificial intelligence such as machine learning and deep leaning. Detectors are defined as IoT devices participating in detection of evasive AI malware in IoT. They can be separated into two groups such that one group of detectors can be armed with detection capability powered by AI, the other group cannot be armed with it. Evasive AI malware can take three strategies of Non-attack, Non-AI attack, AI attack. To cope with these strategies of evasive AI malware, detector can adopt three strategies of Non-defense, Non-AI defense, AI defense. We formulate a Bayesian game theoretic model with these strategies employed by evasive AI malware and detector. We derive pure strategy Bayesian Nash Equilibria in a single stage game from the formulated Bayesian game theoretic model. Our devised work is useful in the sense that it can be used as a basic game theoretic model for developing AI malware detection schemes.
신규 및 변종 악성코드의 발생으로 모바일, IoT, windows, mac 등 여러 환경에서 악성코드 침해 공격이 지속적으로 증가하고 있으며, 시그니처 기반 탐지의 대응만으로는 악성코드 탐지에 한계가 존재한다. 또한, 난독화, 패킹, Anti-VM 기법의 적용으로 분석 성능이 저하되고 있는 실정이다. 이에 유사성 해시 기반의 패턴 탐지 기술과 패킹에 따른 파일 분류 후의 정적 분석 적용으로 기계학습 기반 악성코드 식별이 가능한 시스템을 제안한다. 이는 기존에 알려진 악성코드의 식별에 강한 패턴 기반 탐지와 신규 및 변종 악성코드 탐지에 유리한 기계학습 기반 식별 기술을 모두 활용하여 보다 효율적인 탐지가 가능하다. 본 연구 결과물은 정보보호 R&D 데이터 챌린지 2018 대회의 AI기반 악성코드 탐지 트랙에서 제공하는 정상파일과 악성코드를 대상으로 95.79% 이상의 탐지정확도를 도출하여 분석 성능을 확인하였다. 향후 지속적인 연구를 통해 패킹된 파일의 특성에 맞는 feature vector와 탐지기법을 추가 적용하여 탐지 성능을 높이는 시스템 구축이 가능할 것으로 기대한다.
The real-time detection of malware remains an open issue, since most of the existing approaches for malware categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper balance between these two characteristics is very important, especially for such sensitive systems. In this paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of the set of Application Programming Interfaces (APIs) called by a program and some technical PE features (TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs using the chi-square ($KHI^2$) measure, and then the Phi (${\varphi}$) coefficient was used to classify the features in different subsets, based on their relevance. We evaluated our method using different classifiers trained on different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 seconds.
본 논문에서는 악성코드에 대한 피해를 실시간으로 탐지하고 차단하기 위해 모바일 내부에 악성링크에 대한 데이터베이스를 저장하고 또한 악성링크 탐지 엔진을 통해 웹 서비스를 통제함으로 인해 보다 안전한 모바일 환경을 제공하고자 한다. 최근 모바일 환경에서의 악성코드는 PC 환경 못지않게 기승을 부리고 있으며 새로운 위협이 되고 있다. 특히 모바일 특성상 악성코드의 피해는 사용자의 금전적인 피해로 이어진다는 것이 더 중요한 이유이다. 이러한 사이버 범죄를 어떻게 예방하고 실시간으로 차단할 수 있을 것 인지에 대해 많은 연구가 진행되고 있지만 초보적인 수준에 불과한 실정이다. 추가적으로 SMS나 MMS를 통해 전달되는 스미싱도 탐지 및 차단할 수 있는 방안을 제안하고자 한다. 향후 모바일 사업자는 본 연구를 바탕으로 한 근본적인 대책을 수립하여 안전한 모바일 환경을 구축해야 할 것이다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권9호
/
pp.3258-3273
/
2021
Malware is a severe threat to the computing system and there's a long history of the battle between malware detection and anti-detection. Most traditional detection methods are based on static analysis with signature matching and dynamic analysis methods that are focused on sensitive behaviors. However, the usual detections have only limited effect when meeting the development of malware, so that the manual update for feature sets is essential. Besides, most of these methods match target samples with the usual feature database, which ignored the characteristics of the sample itself. In this paper, we propose a new malware detection method that could combine the features of a single sample and the general features of malware. Firstly, a structure of Directed Cyclic Graph (DCG) is adopted to extract features from samples. Then the sensitivity of each API call is computed with Markov Chain. Afterward, the graph is merged with the chain to get the final features. Finally, the detectors based on machine learning or deep learning are devised for identification. To evaluate the effect and robustness of our approach, several experiments were adopted. The results showed that the proposed method had a good performance in most tests, and the approach also had stability with the development and growth of malware.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권4호
/
pp.2180-2197
/
2019
With the proliferation of the Android malicious applications, malware becomes more capable of hiding or confusing its malicious intent through the use of code obfuscation, which has significantly weaken the effectiveness of the conventional defense mechanisms. Therefore, in order to effectively detect unknown malicious applications on the Android platform, we propose DroidVecDeep, an Android malware detection method using deep learning technique. First, we extract various features and rank them using Mean Decrease Impurity. Second, we transform the features into compact vectors based on word2vec. Finally, we train the classifier based on deep learning model. A comprehensive experimental study on a real sample collection was performed to compare various malware detection approaches. Experimental results demonstrate that the proposed method outperforms other Android malware detection techniques.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.