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Abstract 

In this paper, we deal with a game theoretic problem to explore interactions between evasive Artificial 

Intelligence (AI) malware and detectors in Internet of Things (IoT). Evasive AI malware is defined as malware 

having capability of eluding detection by exploiting artificial intelligence such as machine learning and deep 

leaning. Detectors are defined as IoT devices participating in detection of evasive AI malware in IoT. They 

can be separated into two groups such that one group of detectors can be armed with detection capability 

powered by AI, the other group cannot be armed with it. Evasive AI malware can take three strategies of Non-

attack, Non-AI attack, AI attack. To cope with these strategies of evasive AI malware, detector can adopt three 

strategies of Non-defense, Non-AI defense, AI defense. We formulate a Bayesian game theoretic model with 

these strategies employed by evasive AI malware and detector. We derive pure strategy Bayesian Nash 

Equilibria in a single stage game from the formulated Bayesian game theoretic model. Our devised work is 

useful in the sense that it can be used as a basic game theoretic model for developing AI malware detection 

schemes. 
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1. Introduction 

Evasive malware can be defined as malware having capability of avoiding the detection. Since Artificial 

Intelligence (AI) is known to be useful for enhancing the performance of various systems, attacker may be 

interested in creating evasive AI malware that deploys AI to magnify the evasiveness of malware. To explore 

this threat that can be occurred in Internet of Things (IoT), we devise a game theoretic model to analyze the 

interactions between evasive AI malware and detector in IoT, inspiring design of evasive AI malware detection 

scheme. In particular, we formulate a Bayesian game theoretic model with players of evasive AI malware and 

detector.  We derive pure strategy Bayesian Nash Equilibria in a single stage game. 
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2. Related Work 

As directly relevant work, there is input-driven evasive malware work [2] in which two-player Bayesian 

signaling game is formulated to analyze the interactions between input provider and input receiver in IoT. 

Dynamic analyzer and human user are treated as types of input provider and input-driven evasive malware is 

considered as type of input receiver. Pure strategy and mixed strategy Bayesian Nash equilibria are attained 

for a single-stage game, weak sequential equilibrium is gained for a multi-stage game. Although Bayesian 

game theoretic model is used as in [2], our proposed work deals with a new evasive AI malware in IoT with 

different Bayesian game theoretic problem formulation to [2]. As a result, our pure strategy Nash equilibria is 

distinct to [2]. 

[1] explores how Android evasive malware can escape from dynamic analysis.  In [5], evasive malware is 

studied in speculative execution environment. Sandbox evasion scheme is devised in [4]. In [3], bare-metal 

analysis is harnessed for evasive malware detection.  

 

3. Bayesian Game Theoretic Model for Detection of Evasive AI Malware in IoT 

In the sense that evasive AI malware in IoT can exploit AI to evade the detection efficiently and effectively, 

it  is imperative to examine the interactions between evasive AI malware and detector in IoT. To fulfill this 

need, we employ Bayesian signaling game with two players. Player 1 is defined as evasive AI malware 

detector. Player 2 is defined as evasive AI malware. In our Bayesian signaling game, player 2 has one type of 

evasive AI malware and player 1 knows the type of player 2. However, player 2 does not recognize the type 

of player 1, which has two types of non-AI detector and AI detector. Hence, player 2 needs to determine the 

type of player 1 in accordance with the strategies taken by player 1. The main reason why player 1 has two 

types of Non-AI detector and AI detector is because low-end IoT devices acting as Non-AI detectors need to 

perform malware detection based on non-AI functionality due to their limited resources while high-end IoT 

devices acting as AI detectors can utilize AI functionality for evasive AI malware detection.  

 

Table 1: Notations used in our game.  

Notation Denotation 

Cna Cost incurred by launching Non-AI attack 

Cnd Cost incurred by running Non-AI defense 

Caa Cost incurred by launching AI attack 

Cad Cost incurred by running AI defense 

Iaa 
Iaa=1 if AI attack succeeds 

Iaa=0 if AI attack fails 
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Notation Denotation 

Ina 
Ina=1 if Non-AI attack succeeds 

Ina=0 if Non-AI attack fails 

Gaa Gain acquired by player 2 when AI attack succeeds 

Gad Gain acquired by player 1 with type of AI detector when to defend AI attack 

Gna Gain acquired by player 2 when Non-AI attack succeeds 

Gnd 
Gain acquired by player 1 with type of Non-AI detector when to defend Non-

AI attack 

 

In the sense that player 2 generally obtains more gain in AI attack success than non-AI attack success, we 

can assume that Gaa  > Gna holds. From the perspective that it is generally more difficult to detect AI attack 

than non-AI attack and hence more gain can be attained by defending AI attack than non-AI attack.  Thus, we 

can assume that Gad  > Gnd holds. In the sense that more cost is generally incurred in launching AI attack and 

defense against AI attack than non-AI attack and defense against non-AI attack, we can assume that  Caa > 

Cna, Cad > Cnd. Moreover, in the sense that player 1 with type of non-AI detector (resp. AI detector) can 

perform Non-AI (resp. AI) defense strategy because he takes more gain than cost incurred by adopting Non-

AI (resp. AI) defense strategy, we can assume that Gnd  > Cnd (resp. Gad  > Cad) holds.  

Player 1 with type of Non-AI detector has two strategies of Non-defense and Non-AI defense, player 1 with 

type of AI detector has two strategies of Non-defense and AI defense. Player 2 with type of evasive AI malware 

has three strategies of Non-attack, Non-AI-attack, AI attack. Notations used in our game is presented in Table 

1. More specifically, notations regarding gains and costs used in our game are defined in Table 1. Table 2 

exhibits strategies and payoffs of player 1 with type of Non-AI detector and player 2 with type of evasive AI 

malware. Table 3 displays strategies and payoffs of player 1 with type of AI detector and player 2 with type 

of evasive AI malware. More specifically, zero payoff means no benefit/loss and negative (resp. positive) 

payoff indicates loss (resp. gain) in both Tables 2 and 3. 

 

Table 2: Strategies and payoffs of player 1 with type of Non-AI detector and player 2 with 

type of evasive AI malware. 

 

 Player 2 

  
Non-

attack 
Non-AI attack AI attack 

 Non-defense (0,0) (-Gna, Gna-Cna) (-Gaa, Gaa-Caa) 
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 Player 2 

 

Player 

1 

Non-AI defense (-Cnd, 0) 
(-InaGna+(1-Ina)Gnd-Cnd, 

InaGna-(1-Ina)Gnd-Cna) 
(-Gaa-Cnd, Gaa-Caa) 

 

 

Table 3: Strategies and payoffs of player 1 with type of AI detector and player 2 with type 

of evasive AI malware. 

 

 Player 2 

  Non-attack Non-AI attack AI attack 

 

 

Player 

1 

Non-defense (0,0) (-Gna, Gna-Cna) (-Gaa, Gaa-Caa) 

AI defense (-Cad, 0) (Gad-Cad, -Gad-Cna) 
(-IaaGaa+(1-Iaa)Gad-Cad, 

IaaGaa-(1-Iaa)Gad-Caa) 

 

Theorem 1. A pure strategy Bayesian Nash equilibrium is ((Non-defense if Non-AI detector, Non-defense 

if AI detector), AI attack) under the condition that Iaa =1 and Gaa−Caa > Gna−Cna  hold. 

Proof. (1) We define E2(Non-AI) and E2(AI) as the expected payoff of Non-AI attack and AI-attack 

strategies of player 2 with type of evasive AI malware when player 1 with type of Non-AI detector sticks to 

Non-defense strategy and player 1 with type of AI detector sticks to Non-defense strategy.  

If Iaa =1, Gaa−Caa > Gna−Cna , 
we have  E2(AI) = q(Gaa−Caa)+ (1− q)(Gaa−Caa) = Gaa−Caa 

E2(Non−AI) = q(Gna−Cna) + (1− q)(Gna−Cna) = Gna−Cna 

Because Gaa−Caa > Gna−Cna  and Gaa > Caa , E2(AI) > 0  and E2(AI) > E2(Non−AI)  hold. 

As a result, the optimal strategy of player 2 with type of evasive AI malware is AI attack.  

(2) When player 2 with type of evasive AI malware sticks to AI attack, we define E1n(Non) (resp. E1n(Non-

AI)) as payoff of Non-defense (resp. Non-AI defense) strategy of player 1 with type of Non-AI detector. Also 

we define E1a(Non) (resp. E1a(AI)) as payoff of Non-defense (resp. AI defense) strategy of player 1 with type 

of AI detector. Clearly,  E1n(Non) > E1n(Non-AI) holds since -Gaa  > -Gaa-Cnd. If Iaa =1, E1a(Non) > E1a(AI) holds 

since -Gaa  > -Gaa-Cad. As a result, the optimal strategy of player 1 with type of Non-AI detector (resp. AI 

detector) is Non-defense (resp. Non-defense). 

By (1), (2), the Theorem 1 is proved. 
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If both player 1 and player 2 stick to pure strategy Bayesian Nash equilibrium stated in Theorem 1, player 

1 will do not defense against AI attack launched by player 2 under the condition of Theorem 1. 

 

Theorem  2. A pure strategy Bayesian Nash equilibrium is ((Non-AI defense if Non-AI detector, AI defense 

if AI detector), Non-AI attack) under the condition that Ina =0 and (
Gad+Cna

Gad−Gnd
< q <

Caa−Cna

Gaa+Gnd
  with Iaa =0 or 

Gaa−Caa+Gad+Cna

Gad−Gnd
< q with Iaa =1) hold. 

Proof. (1) We define E2(Non-AI) and E2(AI) as the expected payoff of Non-AI attack and AI-attack 

strategies of player 2 with type of evasive AI malware when player 1 with type of Non-AI detector sticks to 

Non-AI defense strategy and player 1 with type of AI detector sticks to AI defense strategy.  

If Ina =0 and Iaa =0, 
Gad+Cna

Gad−Gnd
< q <

Caa−Cna

Gaa+Gnd
,  

we haveE2(Non − AI) = q(InaGna − (1− Ina)Gnd − Cna) + (1 − q)(−Gad − Cna) = q(−Gnd +Gad) −

Gad − Cna , E2(AI) = q(Gaa−Caa) + (1− q)(IaaGaa− (1− Iaa)Gad−Caa) = q(Gaa+Gad) −
Gad−Caa.   

By the right above conditions of q, E2(Non−AI) > 0 and E2(Non−AI) > E2(AI) holds. 

If Ina =0 and Iaa =1, 
Gaa−Caa+Gad+Cna

Gad−Gnd
< q,  

we have E2(Non−AI) = q(−Gnd+Gad)− Gad−Cna , E2(AI) = Gaa−Caa. Since By the right 

above conditions of  q, E2(Non−AI) > 0 , and E2(Non−AI) > E2(AI) hold. As a result, the optimal 

strategy of player 2 with type of evasive AI malware is Non-AI attack.  

(2) When player 2 with type of evasive AI malware sticks to Non-AI attack, we define E1n(Non) (resp. 

E1n(Non-AI)) as payoff of Non-defense (resp. Non-AI defense) strategy of player 1 with type of Non-AI 

detector. Also we define E1a(Non) (resp. E1a(AI)) as payoff of Non-defense (resp. AI defense) strategy of player 

1 with type of AI detector. Clearly,  E1a(AI) > E1a(Non) holds since Gad  > Cad. If Ina =0, E1n(Non-AI) > E1n(Non) 

holds since Gnd  > Cnd. As a result, the optimal strategy of player 1 with type of Non-AI detector (resp. AI 

detector) is Non-AI defense (resp. AI defense). 

By (1), (2), the Theorem 2 is proved. 

If both player 1 and player 2 stick to pure strategy Bayesian Nash equilibrium stated in Theorem 2, player 

1 with type of Non-AI detector will do Non-AI defense and player 1 with type of AI detector will do AI defense 

against Non-AI attack launched by player 2 under the condition of Theorem 2. 

Theorem 3. A pure strategy Bayesian Nash equilibrium is ((Non-defense if Non-AI detector, AI-defense if 

AI detector), AI attack) under the condition that Iaa =0 and 
Gad+Caa

Gaa+Gad
< q  and  

Caa−Cna

Gaa−Gna
< q hold. 

Proof. (1) We define E2(Non-AI) and E2(AI) as the expected payoff of Non-AI attack and AI-attack 

strategies of player 2 with type of evasive AI malware when player 1 with type of Non-AI detector sticks to 

Non-defense strategy and player 1 with type of AI detector sticks to AI defense strategy.  

If Iaa =0, 
𝐺𝑎𝑑+𝐶𝑎𝑎

𝐺𝑎𝑎+𝐺𝑎𝑑
< 𝑞, 

𝐶𝑎𝑎−𝐶𝑛𝑎

𝐺𝑎𝑎−𝐺𝑛𝑎
< 𝑞, 

we have  𝐸2(𝐴𝐼) = 𝑞(𝐺𝑎𝑎−𝐶𝑎𝑎) + (1−𝑞)(𝐼𝑎𝑎𝐺𝑎𝑎− (1− 𝐼𝑎𝑎)𝐺𝑎𝑑−𝐶𝑎𝑎) = 𝑞(𝐺𝑎𝑎+𝐺𝑎𝑑) −
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𝐺𝑎𝑑−𝐶𝑎𝑎 

𝐸2(𝑁𝑜𝑛−𝐴𝐼) = 𝑞(𝐺𝑛𝑎−𝐶𝑛𝑎) + (1− 𝑞)(−𝐺𝑎𝑑−𝐶𝑛𝑎) = 𝑞(𝐺𝑛𝑎+𝐺𝑎𝑑)−𝐺𝑎𝑑−𝐶𝑛𝑎 

By the right above conditions of q, 𝐸2(𝐴𝐼) > 0 and 𝐸2(𝐴𝐼) > 𝐸2(𝑁𝑜𝑛−𝐴𝐼) holds. As a result, the 

optimal strategy of player 2 with type of evasive AI malware is AI attack.  

(2) When player 2 with type of evasive AI malware sticks to AI attack, we define E1n(Non) (resp. E1n(Non-

AI)) as payoff of Non-defense (resp. Non-AI defense) strategy of player 1 with type of Non-AI detector. Also, 

we define E1a(Non) (resp. E1a(AI)) as payoff of Non-defense (resp. AI defense) strategy of player 1 with type 

of AI detector. Clearly,  E1n(Non) > E1n(Non-AI) holds since -Gaa  > -Gaa-Cnd. If Iaa =0, E1a(AI) > E1a(Non) holds 

since Gad-Cad  > -Gaa. As a result, the optimal strategy of player 1 with type of Non-AI detector (resp. AI 

detector) is Non-defense (resp. AI defense). 

By (1), (2), the Theorem 3 is proved. 

If both player 1 and player 2 stick to pure strategy Bayesian Nash equilibrium stated in Theorem 3, player 

1 with type of Non-AI detector will do not defense and player 1 with type of AI detector will do AI defense 

against AI attack launched by player 2 under the condition of Theorem 3. 

 

Figure 1: Extensive form of Bayesian Game in single stage. 
 

4. Conclusion 

In this work, we formulate a Bayesian signaling game for interaction analysis between evasive AI malware 
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and detector. We derive pure strategy Bayesian Nash Equilibria in a single stage game. As future work, we 

will plan to investigate whether mixed strategy Bayesian Nash Equilibria exist or not and explore the 

interaction analysis between evasive AI malware and detector in multi-stage game. In the sense that our 

devised work plays a role of game theoretic model for AI malware detection in IoT, it will have an impact 

upon how various AI malware detection schemes interact and defend against AI malware in IoT. 
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