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Abstract 
The real-time detection of malware remains an open issue, since most of the existing approaches for malware 
categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper 
balance between these two characteristics is very important, especially for such sensitive systems. In this 
paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of 
the set of Application Programming Interfaces (APIs) called by a program and some technical PE features 
(TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs 
using the chi-square (KHI²) measure, and then the Phi (φ) coefficient was used to classify the features in 
different subsets, based on their relevance. We evaluated our method using different classifiers trained on 
different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy. 
Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09 
seconds. 
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1. Introduction 

Computer systems are a real asset for organizations and corporations in today’s technology-driven 
economy. Unfortunately, they are confronted with several kinds of cyber attacks. Among the most used 
attacks are those based on installing and running a malware in target machines. Malware (e.g., Trojans, 
viruses, worms, etc.) are computer programs, which are designed to accomplish unauthorized actions 
without the user’s consent. Malware can be used to steal or damage data or to disrupt network traffic. 
Moreover, the compromised machines can be used as “zombies” in order to conduct targeted attacks, 
such as DDOS [1]. Recently, we are witnessing an unprecedented and a very concerning proliferation of 
malware. McAfee has reported that more than 30 million new malware were discovered during the first 
quarter of 2014; that number was doublethe amount for the the same period of 2013 [2,3]. This 
malicious software infects thousands of computers every day, and Microsoft Windows operating system 
(OS) remains the most affected, as it is the most used OS worldwide. During January 2015, about 80% 
of computers ran on MS Windows OS [4]. Under the latter operating system, malware are often present 
as legitimate executable files, and they can have any known file extension (e.g., exe, com, etc.). 
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Therefore, they are structured according to a common executable file format called PE (portable 
executable) [5] (see Section 2).  

Efficiently protecting computers against malware attacks has become vital for companies, 
corporations, and individuals. Unfortunately, the existing commercial antivirus (AV) software is unable 
to provide the required level of protection. Techniques used by most AVs are signature-based. A 
signature is a short and unique string of bytes, which is recorded in the signature’s database for each 
known malware so that future examples of it can be correctly classified with a small error rate. Such 
techniques suffer from two major drawbacks: First, they need to have a prior knowledge of malware by 
their signatures. Therefore, they are unable to detect unknown or newly launched (zero-day) ones [6,7]. 
Second, they are inefficient against metamorphic malware (i.e., variants of known malware) [6,8]. 
Recently, AV software has become more effective by using more sophisticated analysis techniques. 
However, there is still the problem of delay, which can vary from a few hours to several days, between 
the detection of a new malware and the updating of the viral databases by the AV firms [7,9,10]. During 
this period, the malware could cause considerable damages. 

In the last decade, researchers employed more sophisticated malware detection methods, such as 
behavioral and heuristic analyses [11,12], as an alternative to signature-based ones. Behavioral analysis, 
which is also known as dynamic analysis, consists of observing the behavior of a program at runtime, by 
monitoring its execution in an isolated environment (Sandbox or virtual machine). During the 
monitoring process, the actions that the program accomplishes (such as library uses, kernel calls, 
network traffic, and registry updates) are recorded and used to generate features for classifying the 
program (malware or benign). The main advantage of dynamic analysis is that it can detect unknown 
and metamorphic malware [10]. However, new evasive methods that can detect the analysis 
environment and completely stop the execution of the malware code or delay the execution of its 
malicious content until the monitoring process is terminatedhave been introduced. Note that the 
monitoring process is run for a couple of minutes at most, which itself is inconvenient since it cannot 
observe the entire capabilities of a given program as not all execution paths can be explored [10]. 
Furthermore, such techniques are not suitable for real-time purposes. 

On the other hand, heuristic-based analysis uses data mining and machine learning techniques to 
learn the behavior of the program [11]. Such techniques investigate different file features, such as 
Opcode instructions, structural information, and APIs. These sets of information are represented in 
different forms (e.g., control flow graphs, n-grams, etc.) and are used as features for the classification 
process, which is generally done using different classifiers, such as decision trees and Bayes algorithm. 
API calls were widely used for constructing anti-malware systems [6,8,10,13-16], since they can provide 
valuable information related to the possible behaviors that a given program could have [16]. Indeed, the 
operating system provides APIs to user applications allowing them to request its services. Also, some 
authors [12] have investigated structural information due to its robustness against code obfuscation 
techniques, such as packing. 

The heuristic-based anti-malware systems are able to detect unknown and metamorphic malware 
[11,17]. They are also easy to implement compared to the behavioral ones. However, heuristic-based 
systems suffer from the inconvenience of their high false positive rate (i.e., benign programs that are 
wrongly detected as malware) [11]. In order to overcome this drawback, most of the existing systems 
combine a large number of different types of features [11]. This can lead to intensive computations and 
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increase the processing time. Due to that, most of the actual heuristic-based anti-malware systems are 
inadequate for real-time detection, which is a suitable characteristic, especially in a dynamic 
environment (i.e., a malware analysis environment). Therefore, being able to find an appropriate 
balance between accuracy and detection time is a real challenge when constructing anti-malware 
systems. 

In this work, we introduce an efficient heuristic-based PE-malware detection system, which has a 
real-time response and a low false alarm rate. The proposed system is composed of a feature extraction 
module, a pre-processing module, a feature selection module, and a decision module. The feature 
extraction module statically (i.e., without running the program) extracts the set of API calls from the 
Import Address Table (IAT), and the technical PE features (TPF) from the PE-optional header (see 
Section 2). The feature selection module is based on the KHI² test, which is a statistical method used for 
hypothesis testing [18]. We introduce the Phi (φ) measure for feature set reduction, which means that 
the decision will be taken according to the most significant features. The latter allows for a real-time 
response. The decision module is based on different data mining based classifiers that have been 
implemented in the Waikato Environment for Knowledge Analysis (WEKA) [19]. For experimentation 
purposes, we used two sets of files — a benign set and a malware set — that we obtained from well-known 
dedicateddatabases. To the best of our knowledge, our work is the first to use a combination of the 
KHI² measure and the φ coefficient as a feature reduction method and to use this combination with a 
hybridization of features (APIs + TPFs). 

This paper is organized as follows: in Section 2, we introduce the PE file format and its structure, in 
order to facilitate comprehension about the rest of the sections. Section 3 is devoted to the best-known 
related works, published in the literature. In Section 4, we present the proposed malware detection 
system, and in Section 5 we present our experimental results. In Section 6, we introduce our analysis of 
the obtained results, and we compare the performance of our system with the existing ones. Section 7 
concludes our work and underlines its perspectives. 

 
 

2. PE File Format 

PE is the common file format for binary executables and DLLs in Windows OS. A PE file is mainly 
composed of an MS-DOS header, PE header, and Section headers (section table), and a set of sections 
[5], as shown in Fig. 1. 

 

 
Fig. 1. Simplified PE-file structure. 
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 The MS-DOS header is located at the beginning of the PE-file and it is used to check whether it is 
a valid executable or not, when the file is run under DOS. 

 The PE-header contains some important pieces of information about the PE-file. The PE-header 
is an IMAGE_NT_HEADERS data structure that contains three members, which are signature, 
file header, and the optional header (Fig. 2). 

 The PE-optional headerisan IMAGE_OPTIONAL_HEADER structure, and it is composed of 
several fields, such as Magic, MajorLinkerVersion, and CheckSum [5]. One of the PE-optional 
header fields is the data directory, which is an array of 16 IMAGE_DATA_DIRECTORY 
structures. One of these structures is the IMAGE_DIRECTORY_ENTRY_IMPORT, which 
contains information about all the imports (DLLs/APIs). The import entry points to a vector of 
IMAGE_IMPORT_DESCRIPTOR structures. The field “OriginalFirstThunk” of the latter 
structure contains an RVA (Relative Virtual Address), which points to the IAT, as shown in Fig. 
2. The IAT is an array of function pointers that contains elements of IMAGE_THUNK_DATA 
structures. Each structure corresponds to an imported API, and they contain the ordinal of a 
function or an RVA to an IMAGE_IMPORT_BY_NAME structure. The latter contains the names 
of the APIs that the code calls. 

 

 
Fig. 2. Structure of the PE-optional header and location of the IAT. 

 
 

3. Related Works 

In this section, we provide a brief description of some often-cited works in the literature that have 
used APIs, PE features, or a KHI²-based decision to detect malware files. 

Schultz et al. [16] introduced the first anti-malware system based on machine learning techniques. 
They investigated different information in the PE file, such as strings, API functions, and byte sequence. 
They used a classification method based on the naïve Bayes algorithm, and they obtained an overall 
accuracy of 97.11%. The method introduced in [13] uses naïve Bayes classification with API calls. The 
extracted APIs were used to construct models of suspicious behaviors, by grouping some APIs based on 
scenarios that a malware can accomplish, such as searching for a file to infect and writing malicious 
data into it. They obtained 93.7% accuracy. 

Ye et al. [6] proposed CIMDS, which is an improvement of their previous malware detection system 
called IMDS (Intelligent Malware Detection System) [8]. As its predecessor, CIMDS is based on Object 
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Oriented Association (OOA) mining. They used the KHI² method for rule pruning (removing 
insignificant rules), rule ranking (from most significant to least significant), and rule selection (best 
nAPIs). CIMDS was the first work that used post-processing techniques. The system achieved 67.5% 
accuracy and 88.16% detection rate, which still needs improvements. However, it has a very good 
detection time with 0.09 seconds per file. The authors in [14] also presented a malware detection system 
based on OOA mining and API calls. They proposed a feature selection method to reduce the number 
of obtained APIs by selecting the top 1,000 ones based on two criteria, which are document frequency 
and information gain. The system achieved 91.2% accuracy and a detection rate of 97.3%. 

The authors in [17] combined the KHI² test andthehidden Markov model (HMM) for detecting 
malware using an Opcode sequence. They extracted Opcode from the analyzed files using the third 
party disassembler IDA Pro. They used the KHI² test to identify the set of instructions that are most 
likely to be used by the NGVCK malware generator to generate malware variants. They then learned the 
HMM using the set of obtained instructions in order to categorize the files. They tested their method on 
200 malware and 40 benign programs. Their proposed system had an overall accuracy of 91%. The 
drawback of this method is the usage of a closed source disassembler (IDA Pro), which makes their 
system not fully automatic. Moreover, their analysis was limited to malware that is generated using 
NGVCK. 

The method described in [15], extracts API calls and compares them to previously constructed 
models of malicious APIs stored in a signature’s database. A similarity measure between the extracted 
model and the existing one was calculated by combining three different metrics, which are cosine 
similarity, extended Jaccard measure, and Pearson correlation. After that, they selected the most 
relevant features using a weighting scheme. The weight of an API was obtained by calculating the 
product of two metrics, which are term frequency and inversed document frequency. The classification 
phase was based on a Support Vector Machine (SVM) classifier and they obtained an overall accuracy 
of 91.5%. 

The authors in [10] proposed a malware detection system that is based on analyzing API functions 
and their arguments. They used a dynamic feature extraction method using a virtual environment. They 
evaluated their method using different classifiers, and they obtained an overall accuracy of 98.1%. Using 
arguments requires program being executed. Consequently, this method suffers from the 
inconveniences of dynamic approaches, which were previously mentioned. 

PE-Miner [12] was introduced as a real-time framework for PE-malware detection. This framework 
statically extracts PE-files structural features from the PE header, optional header, etc. The authors 
proposed a method based on information gainto select the most relevant features. They evaluated their 
framework using five different data mining classifiers. The proposed framework was able to achieve a 
detection rate ofmore than 99% and a false alarm rate of about 5%. The categorization process takes an 
average of 0.244 seconds per file. 

 
 

4. Proposed System 

Our proposed method for PE-malware categorization is based on the observation that there are some 
PE-file features that are specific to malware and others to benign programs. These features appear with 
different frequencies between these two categories of PE-files. Therefore, these features must be 
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extracted and sorted in a way that we consider to be only the most significant ones that will make a 
significant contribution in the benign-malware categorization process. Thus, the statistical KHI² test is 
used to estimate the significance (relevance) of these features. Thus, we will provide, at the same time, a 
real-time detection of PE-malware and a high specific categorization using small sets of features. 

 
4.1 System Architecture  
 

Our proposed system for malware detection is composed of four different modules, which are the 
feature extraction module, pre-processing module, feature selection module, and the decision module, 
as shown in Fig. 3. 

 

 
 

4.2 Feature Extraction 
 

As mentioned previously, our system relies on the analysis of two different types of features, which 
are API calls and some TPFs. The TPFs are represented by the information stored in the PE-optional 
header fields. In order to extract these two types of features from a PE file and calculate their 
frequencies, we developed a module written in Python that uses a third-party Python module called 
Pefile, which is a multi-platform module for reading and working with PE files and extracting different 
information from them [20]. This extraction method is based on a static analysis of the IAT for API 
calls and the PE-optional header for the TPFs (see Section 2). Given below in Figs. 4 and 5, is an 
overview of some lines of Python code that we wrote to extract API calls and TPFs from multiple PE 
files contained in a folder named “Malware_Samples.” 
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Note that TPFs are represented by concatenating the field’s name with its value (e.g., ‘checksum0’), as 
shown in lines 8 and 9 of the above source code (Fig. 5). 

 

 
Fig. 4. Python source code for extracting API calls (for API in entry.imports) and storing them in APIs 
structure (API_LIST). 

 

 
Fig. 5. Python source code for extracting TPFs (pe.OPTIONAL_HEADER…) and storing them in TPFs 
structure (TPF_LIST). 

 

4.3 Pre-processing  
 

After extracting APIs and TPFs using the previous module, the pre-processing module proceeds in 
removing duplicated APIs in the same PE file, and then it calculates their call frequencies in malware 
and benign files. The module also calculates the frequency of appearances of the obtained TPFs in 
malware and benign programs. At the end of this phase we obtained a table composed of three columns 
that, respectively, represent the feature’s name, its frequency in malware PE, and its frequency in benign 
PE, and a number of rows, which is equal to the number of obtained features (APIs + TPFs) (see 
Subsection 5.2). 

 
4.4 Feature Selection  
 

The third module of our system is the feature selection module. It was also developed as a Python 
script, and it aims at selecting the most relevant features from the obtained list of APIs and TPFs. This 
module is based on a well-known statistical method, which is the KHI² hypothesis test [18]. This 
method is used to decide whether there is a significant association between two qualitative variables. 
This association is expressed by the distance D between an observed frequency O and an expected one 
E, which represents the case of perfect independence between the variables). Therefore, the correlation 
strength between two variables is proportional to the distance D. In our case, we studied the association 
between two variables: First, the variable “Feature” that has two modalities of “present” and “not 
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present.” This variable represents the presence or absence of a feature (API or TPF) in a PE file. Second, 
the variable “PE-cat,” which also has the two modalities of “malware” and “benign.” This variable 
represents the two categories of PE files, for instance: “malware” and “benign.” When conducting a 
KHI² test, we first started by defining the two hypotheses H0 and H1, where one will be accepted and the 
other rejected. H0 (null hypothesis) represents the case of independence between the two variables. H1 
(alternative hypothesis) represents the case of dependency between the two variables. In our case, H0 

and H1 are defined as follows: 
 H0 : The presence or absence of a feature (API, TPF) is independent of the PE file’s type (malware 

or benign). 
 H1 : The presence or absence of a feature (API, TPF) is related to the PE file’s type (malware or 

benign). 

For each feature F, we had a contingency table, as shown in Table 1. 
 

Table 1. Contingency table of a feature F 
Feature: present Feature: not present Row total 

PE-cat: malware M1 M2 M 
PE-cat: benign N1 N2 N 
Column total M1+N1 M2+N2 T 

 

We describe below the different variables presented in Table 1. 

 M and N are, respectively, the total number of malware and benign PE files. 
 T is the total number of used PE files (T=M+N). 
 M1 is the number of malware PE files that contain F, and M2 is the number of malware PE files 

that do not contain F, such as M=M1+M2. 
 N1 is the number of benign PE files that contain F, and N2 is the number of benign PE files that 

do not contain F, such as N= N1+N2. 
 
Based on the contingency table (Table 1), the KHI² score (D²) is calculated using Eq. (1). 
ଶܦ  = ∑ (ைೝ,೎ିாೝ,೎)మாೝ,೎ 																																																																	(1) 

 
where, Or,c is the observed frequency count at level r of the row variable and level c of the column 
variable. And Er,c is the expected frequency, which is defined by the following equation : 

௥,௖ܧ  = ௡ೝ×௡೎் 																																																																			(2) 

 
where, nr and nc  are, respectively, the sum of row r and the sum of column c. After calculating the KHI² 
values for the extracted features, we had to determine which of the two hypotheses H0 or H1 would be 
accepted or rejected for every feature. To do that, we compared the obtained KHI² values (D²) of every 
feature to a threshold, which represents the theoretical KHI² value (χ²), and H0 was accepted (H1 
rejected) for every feature that had D²≤ χ². Note that according to the KHI² hypothesis test, the features 
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for which H0 is accepted are considered to be irrelevant and will be systematically removed. The χ² value 
is obtained by first calculating the degree of freedom (DF), and choosing a signification level α that 
represents the probability of rejecting a hypothesis even if is true. Considering DF and α, the χ² value is 
obtained from the KHI² distribution table [21]. DF is calculated as follows: 

ܨܦ  = (ܴ − 1) × ܥ) − 1)                                                               (3) 
 

where R and C represent, respectively, the number of modalities of the first and the second variables. 
After removing all the features that are not correlated, which correspond to the case where H0 is 
accepted, we calculated the φ coefficient for the remaining features. The φ coefficient [22] is a 
normalization of the KHI² score (D²), which can only be applied to a 2×2 contingency tables (two 
variables with two modalities). It is used to measure the strength of the dependency between the two 
variables [23]. In our work, this coefficient was used to group features in subsets according to their 
correlation strength (relevance). φ is calculated as follows: 
 φ = ට஽మ்

                                                                            (4) 

 
The value of φ ranges between 0 and 1, and the relevance of a feature (API or TPF) is proportional to 

that value. Therefore, we chose to use three subsets that would contain features that have φ≥0.25, φ≥0.5, and φ≥0.75, respectively. Our aim was to be able to identify the optimal number of features 
required to have the highest accuracy, which also helps to reduce the detection time. 

 
4.5 Decision 
 

After generating the different features’ subsets from the previous module, we had to identify which of 
the APIs or TPFs or combinations of them provided the best results (i.e., high accuracy and low 
detection time). Therefore, we first evaluated our system using TPFs subsets. We then used APIs 
subsets, and, finally, we evaluated it by trying every possible combination of the TPFs-APIs subsets. We 
used different classification algorithms available in WEKA, which are the decision tree (J48) [19], 
boosted decision tree (B-J48) using the AdaBoostM1 algorithm [19], Rotation Forest (Rot-F) [24], and 
Random Forest (Ran-F) [25]. Our decision module took the features’ subsets generated from the feature 
selection module and the set of extracted ones from the analyzed fileas input. Both are represented as 
WEKA data files (.arff file) [19], which are automatically generated using a Python script. 

 
 

5. Experimentation 

5.1 Dataset 
 

For experimentation purposes, we collected a dataset composed of 552 PE files (338 malware and 214 
benign programs), of 80% were used as the training set and 20% as the test set. The infected PE files 
were downloaded from Vxheavens.com and contained 12 different malware categories, as shown in 
Table 2. 
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Table 2. Malware dataset  
No. Malware type Counts 

1 Backdoor 27 
2 Email-Worm 19 
3 Exploit  28 
4 Hacktool 22 
5 Net-Worm 16 
6 P2P-Worm 17 
7 Trojan 59 
8 Trojan-Downloader 24 
9 Trojan-Dropper 32 

10 Trojan-Spy 18 
11 Virus 42 
12 Worm 34 

Total 338 
  
The benign PE files include some utility software that was downloaded from Softpedia.com, and also 

some Windows system files that were collected from a clean installation of Windows XP. In our work, 
we only considered non-packed (non-compressed) programs. Packing is a method that is legitimately 
used by software developers to protect their programs from reverse engineering, and malware creators 
use it to hide the malicious code from being detected by AV software [26]. Therefore, we analyzed our 
dataset using well-known Packers detection tools, such as PEiD, and ProtectionID. These tools are able 
to detect a large variety of packers, including popular ones like UPX, ASPack, and PECompact. Note 
that packed binaries are the only category that was excluded from our samples. We also scanned all the 
files using more than 40 different AVs from the website VirusTotal.com. More than 30 AVs identified 
the infected PE files that were used as malware, and none of the benign PE files were identified as 
malware. 

 
5.2 Results  
 

In this subsection, we present the results obtained from the feature extraction phase to the decision 
phase. After the feature extraction and pre-processing phases, we obtained the results presented in 
Tables 3 and 4. 

 
Table 3. Overview of the obtained TPFs  

No. Optional-header field Value 
Frequency 

Malware (271) Benign (172) 
1 BaseOfCode 4096 271 (100) 172 (100) 
2 BaseOfData 102400 4 (1) 1 (1) 
3 BaseOfData 106496 3 (1) 1 (1) 
4 BaseOfData 110592 1 (1) 0 (0) 
5 BaseOfData 118784 2 (1) 0 (0) 

… … … … … 
586 SizeOfUninitializedData 802816 1 (1) 0 (0) 
587 SizeOfUninitializedData 8192 1 (1) 0 (0) 
588 SizeOfUninitializedData 95744 1 (1) 0 (0) 
589 Subsystem 2 226 (83) 106 (62) 
590 Subsystem 3 45 (17) 66(38) 

Data are presented as number (%). 
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Table 4. Overview of the obtained APIs  

No. API name 
Frequency 

Malware (271) Benign (172) 
1 Abort 4 (1) 1 (1) 
2 Accept 21 (8) 0 (0) 
3 Ace_Cleanup_Destroyer 1 (1) 0 (0) 
4 ActivateKeyboardLayout 63 (23) 4 (2) 
5 AddAccessAllowedAce 1 (1) 18 (10) 

… … … … 
1636 xml_setcharacterdatahandler 1 (1) 0 (0) 
1637 xml_setelementhandler 1 (1) 0 (0) 
1638 xml_setuserdata 1 (1) 0 (0) 
1639 zwquerysysteminformation 1 (1) 0 (0) 
1640 zwunmapviewofsection 1 (1) 0 (0) 

Data are presented as number (%). 
 

We calculated the KHI² values for the obtained APIs and TPFs and removed the irrelevant ones that 
had KHI² ≤ 3.84 (3.84 is the χ² value for DF=1 and alpha=0.05). Thus, H0 was rejected and H1 was 
accepted for 681 APIs and 50 TPFs, and H0 was accepted and H1was rejected for 959 APIs and 540 
TPFs. The results are presented in Tables 5 and 6. 

 
Table 5. Overview of the obtained KHI² and φ values for the selected TPFs 

No. TPFs KHI² ૎ 
1 CheckSum0 375.21 0.92 
2 MajorImageVersion0 370.57 0.91 
3 DllCharacteristics0 355.91 0.9 
4 MajorOperatingSystemVersion5 346.02 0.88 
5 MinorOperatingSystemVersion0 341.92 0.88 

… … … … 
46 BaseOfData49152 4.03 0.1 
47 SizeOfImage28672 3.95 0.09 
48 MinorLinkerVersion55 3.86 0.09 
49 SizeOfImage163840 3.86 0.09 
50 SizeOfInitializedData28672 3.86 0.09 

 
Table 6. Overview of the obtained KHI² and φ values for the selected APIs 

No. APIs KHI² ૎ 
1 __p__commode 254.59 0.76 
2 __setusermatherr 254.59 0.76 
3 _exit 254.59 0.76 
4 _xcptfilter 254.59 0.76 
5 _controlfp 245.57 0.74 

… … … … 
677 Getenhmetafiledescriptiona 3.86 0.09 
678 GetSockName 3.86 0.09 
679 Ischaralphaa 3.86 0.09 
680 Ntohl 3.86 0.09 
681 GetCurrentThread 3.85 0.09 
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As mentioned previously, we obtained a final list of 681 APIs and 50 TPFs with their corresponding 
KHI² scores and φ values, as shown in Tables 5 and 6. We divided these features into different groups 
(subsets) according to their φ values. At the end of the feature selection phase, we obtained three 
subsets for APIs, which are A1, A2, and A3, and three subsets for TPFs, which are H1, H2, and H3. The 
latter subsets correspond, respectively, to the three φ	values, which are φ≥0.75, φ≥0.5, and φ≥0.25. We 
obtained 5, 31, and 297 APIs in A1, A2, and A3, respectively. We also obtained 11, 14, and 22 TPFs in 
H1, H2, and H3. We used a fourth subset for both APIs (A4) and TPFs (H4) that contained all of the 
extracted features (1,640 APIs and 590 TPFs). The purposed of using these two additional subsets was 
to see whether the proposed feature selection method improved our system’s performance or not. 

In the next subsection, we evaluate our system’s performance by using different classifiers with the 
obtained features’ subsets and see which subset or combination of subsets generates the best results. 

 

5.3 Evaluation  
 

Our experiments were conducted on a Windows 7 OS, I3-2350M 2.30 GHZ CPU, and 4GB of RAM 
computer. The feature extraction, pre-processing, and selection modules were implemented in Python 
27. The decision module was implemented in WEKA 3.7. 

The performance of a malware detection system is generally evaluated according to three different 
metrics, as discussed below. 

 
 Detection rate (DR): This represents the percentage of malware detectedamong all malware of the 

given test set, and it is calculated using Eq. (5): 
 DR = ே௨௠௕௘௥	௢௙	ௗ௘௧௘௖௧௘ௗ	௠௔௟௪௔௥௘்௢௧௔௟	௡௨௠௕௘௥	௢௙	௠௔௟௪௔௥௘ × 100%                                             (5) 

 

 False alarm rate (FA): This is the percentage of benign files wrongly classified as malware among 
all the benign files of the given test set, and it is calculated using Eq. (6): 

 

FA= ே௨௠௕௘௥	௢௙	௕௘௡௜௚௡	௙௜௟௘௦	௖௟௔௦௦௜௙௜௘ௗ	௔௦	௠௔௟௪௔௥௘்௢௧௔௟	௡௨௠௕௘௥	௢௙	௕௘௡௜௚௡	௙௜௟௘௦ × 100%																																					(6) 

 

 Accuracy (AC): This represents the rate of files that were correctly classified in their class, and it 
is calculated using Eq. (7): 

 AC = ே௨௠௕௘௥	௢௙	௖௢௥௥௘௖௧௟௬	௖௟௔௦௦௜௙௜௘ௗ	௙௜௟௘௦்௢௧௔௟	௡௨௠௕௘௥	௢௙	௙௜௟௘௦ × 100%                                      (7) 

 

Since we want to achieve a real-time detection of malware, we must take into consideration the 
detection time (DT) as a fourth metric to evaluate our system’s performance. DT represents the average 
time required for categorizing a given PE file from our test set, and it is expressed in seconds per file. 
The obtained results are presented in Tables 7–9. 
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Table 7. Experimental results using TPFs subsets 
Subset ૎ TPF counts Classifier DR (%) FA (%) AC (%) DT (S) 

H1 ≥0.75 11 

J48 100 9.52 96.33 0.074 
B-J48 100 9.52 96.33 0.076 
Ran-F 100 9.52 96.33 0.074 
Rot-F 98.51 7.14 96.33 0.074 

H2 ≥0.5 14 

J48 98.51 9.52 95.41 0.074 
B-J48 97.01 7.14 95.41 0.074 
Ran-F 100 9.52 96.33 0.074 
Rot-F 100 7.14 97.25 0.077 

H3 ≥0.25 22 

J48 98.51 9.52 95.41 0.074 
B-J48 95.52 9.52 93.58 0.074 
Ran-F 98.51 7.14 96.33 0.074 
Rot-F 98.51 9.52 95.41 0.076 

H4 - 590 

J48 98.51 9.52 95.41 0.081 
B-J48 85.07 4.76 88.99 0.086 
Ran-F 89.55 4.76 91.74 0.081 
Rot-F 97.01 7.14 95.41 0.116 

 
We can see from the results presented in the table above that our system has the highest AC with the 

subset H2 (97.25%), with an improvement of 1.84% compared with the obtained AC using the subset 
H4 (no feature selection). In addition, the average detection time was also reduced (-0.004s). 

 
Table 8. Experimental results using APIs subsets 

Subset ૎ API counts Classifier DR (%) FA (%) AC (%) DT (S) 

A1 ≥0.75 5 

J48 100 28.57 88.99 0.076 
B-J48 100 28.57 88.99 0.076 
Ran-F 100 28.57 88.99 0.076 
Rot-F 100 28.57 88.99 0.076 

A2 ≥0.5 31 

J48 95.52 11.90 92.66 0.078 
B-J48 97.01 7.14 95.41 0.078 
Ran-F 98.51 14.29 93.58 0.078 
Rot-F 98.51 7.14 96.33 0.081 

A3 ≥0.25 297 

J48 94.03 11.90 91.74 0.087 
B-J48 97.01 9.52 94.50 0.087 
Ran-F 98.51 14.29 93.58 0.086 
Rot-F 97.01 9.52 94.50 0.110 

A4 - 1640 

J48 95.52 9.52 93.58 0.138 
B-J48 97.01 9.52 94.50 0.147 
Ran-F 100 11.90 95.41 0.136 
Rot-F 97.01 9.52 94.50 0.343 

 

The results presented in Table 8 show that our system is more accurate with the subset A2 and Rot-F 
classifier. Compared with the subset A4 there was an improvement of 1.27%. The detection time was 
reduced by 40% from 0.136s (A4+Ran-F) to 0.081s (A2+Rot-F). By comparing the results in Table 7 
and Table 8, we can see that TPFs provided a better accuracy (97.28%) compared with APIs (96.20%), 
and a better detection time (-0.004s). Next, we combined both APIs and TPFs in order to increase 
accuracy. The results are presented in Table 9 and include only the best classifier scores. 



Mohamed Belaoued and Smaine Mazouzi 
 

 

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 657 

As can be seen from the obtained results, we were able to improve the accuracy of our system, 
compared with TPFs only (+0.67%) and APIs only (+1.84%), and that by combining H2 and A3 subsets 
using B-J48. Furthermore, we were able to keep a good detection time with an average of 0.090 s. We 
were also able to achieve the same accuracy with the combination of H3 and A3 subsets using the same 
classifier, but with a detection time of 0.092 s. Therefore, we prefer to consider the first combination 
(H2+A3). From the results previously presented, we can conclude that the proposed feature selection 
method made a very important contribution in increasing the system’s accuracy and in reducing the 
detection time. 

 
Table 9. Experimental results (best classifier) using combinations of API-TPF subsets 

Subset Classifier DR (%) FA (%) AC (%) DT (S) 
H1+A1 B-J48 100 9.52 96.33 0.080 
H1+A2 J48 100 7.14 97.25 0.080 
H1+A3 Ran-F 100 9.52 96.33 0.089 
H1+A4 Rot-F 98.51 7.14 96.33 0.333 
H2+A1 B-J48 97.01 7.14 95.41 0.079 
H2+A2 B-J48 95.52 7.14 94.50 0.080 
H2+A3 B-J48 100 4.76 98.17 0.090 
H2+A4 B-J48 98.51 4.76 97.25 0.145 
H3+A1 Rot-F 100.00 7.14 97.25 0.081 
H3+A2 B-J48 95.52 7.14 94.50 0.080 
H3+A3 B-J48 100 4.76 98.17 0.092 
H3+A4 B-J48 98.51 4.76 97.25 0.157 
H4+A1 Rot-F 98.51 7.14 96.33 0.148 
H4+A2 J48 98.51 7.14 96.33 0.103 
H4+A3 B-J48 97.01 9.52 94.50 0.124 
H4+A4 B-J48 98.51 4.76 97.25 0.187 

 
 

6. Comparison and Discussion 

In this section, we evaluate the efficiency of our system by comparing our obtained results to those of 
the previously cited systems, as presented in Table 10 and Fig. 6. 

 
Table 10. Comparison of our results with previously cited methods having used the same evaluation metrics 

Method Features used DR (%) AC (%) 
Our method API + TPFs 100 98.17 
CIMDS [6] API 88.16 67.50 
Ding et al. [14] API 97.30 91.20 
Salehi et al. [10] API + Arguments 99.20 98.40 
Schultz et al. [16] Strings 97.43 97.11 
Wang et al. [13] API 94.40 93.71 
 
From the results presented in the above table, is can be seen that our system outperforms four of the 

five presented systems in terms of accuracy, with an improvement that varies from 1.06% to 30.67%. 
The method proposed by Salehi et al. [10] had a better accuracy than our method with an improvement 
rate of 0.23%. However, our system has the best detection rate compared to all of these systems. 
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Fig. 6. Histogram comparing our system’s AC and DR with those of the previously cited ones. 

 
Considering the detection time (categorization time), we can conclude that our system is adequate for 

the real-time detection of malware, since it only requires 0.090s for the whole categorization process. 
Our system has the same detection time as CIMDS [6], and it is almost three times faster than PE-
Miner [12], as the latter takes 0.244s to categorize a file. 

Our proposed feature extraction and pre-processing method took 0.040s, 0.037s, and 0.041s for APIs, 
TPFs, and APIs + TPFs, respectively. These results are very satisfying compared with the method used 
in [10], which needs to monitor the analyzed program for two minutes in order to extract the API calls 
and their arguments, which is almost 3,000 times the amount of time required for our proposed 
method. 

The time cost for generating the .arff file depends on the number of features used. For instance, it 
took 0.037s with A1+H1, 0.049s with H3+A3, and 0.142s for H4+A4. Note that the arff file generation 
process is related to the usage of the WEKA environment. Therefore, its time cost was not taken into 
consideration when the classifier was directly implemented and integrated in our system. 

The time cost for the classification process depends on the number of used features and the 
classification method. For instance, with H1+A1 subsets and the B-J48 classifier, the classification 
process took 0.001s, with H2+A3 using the same classifier it took 0.004s, and using the Rot-F classifier it 
took 0.119s. 

 
 

7. Conclusion and Future Works 

In this work, we have presented a fast PE-malware detection system that is based on the analysis of 
API calls and TPFs. The KHI² test was used as the feature selection method and was combined with the 
φ coefficient, which was used to select the optimal number of features. Different classification 
algorithms were used to evaluate our system. The results show that our system is more accurate when 
the APIs and TPFs are combined using a B-J48 classifier, as we achieved an overall accuracy of 98.27%. 
Our system is automatic and can be used for the real-time detection of malware. As for future work, we 
will try to increase the accuracy of our system by combining other types of features and at the same 
time, we will try to keep the same rapidity. We alsointend to study the different API associations that 
are specific to the different malware categories, which will allow for the multiclass categorization of 
malware. 
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