

www.kips.or.kr Copyright© 2016 KIPS

A Chi-Square-Based Decision for Real-Time Malware
Detection Using PE-File Features

Mohamed Belaoued* and Smaine Mazouzi**

Abstract
The real-time detection of malware remains an open issue, since most of the existing approaches for malware
categorization focus on improving the accuracy rather than the detection time. Therefore, finding a proper
balance between these two characteristics is very important, especially for such sensitive systems. In this
paper, we present a fast portable executable (PE) malware detection system, which is based on the analysis of
the set of Application Programming Interfaces (APIs) called by a program and some technical PE features
(TPFs). We used an efficient feature selection method, which first selects the most relevant APIs and TPFs
using the chi-square (KHI²) measure, and then the Phi (φ) coefficient was used to classify the features in
different subsets, based on their relevance. We evaluated our method using different classifiers trained on
different combinations of feature subsets. We obtained very satisfying results with more than 98% accuracy.
Our system is adequate for real-time detection since it is able to categorize a file (Malware or Benign) in 0.09
seconds.

Keywords
Chi-Square Test, Malware Analysis, PE-Optional Header, Real-Time Detection Windows API

1. Introduction

Computer systems are a real asset for organizations and corporations in today’s technology-driven
economy. Unfortunately, they are confronted with several kinds of cyber attacks. Among the most used
attacks are those based on installing and running a malware in target machines. Malware (e.g., Trojans,
viruses, worms, etc.) are computer programs, which are designed to accomplish unauthorized actions
without the user’s consent. Malware can be used to steal or damage data or to disrupt network traffic.
Moreover, the compromised machines can be used as “zombies” in order to conduct targeted attacks,
such as DDOS [1]. Recently, we are witnessing an unprecedented and a very concerning proliferation of
malware. McAfee has reported that more than 30 million new malware were discovered during the first
quarter of 2014; that number was doublethe amount for the the same period of 2013 [2,3]. This
malicious software infects thousands of computers every day, and Microsoft Windows operating system
(OS) remains the most affected, as it is the most used OS worldwide. During January 2015, about 80%
of computers ran on MS Windows OS [4]. Under the latter operating system, malware are often present
as legitimate executable files, and they can have any known file extension (e.g., exe, com, etc.).

※ This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which

permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Manuscript received March 12, 2015; accepted August 25, 2015.
Corresponding Author: Mohamed Belaoued (belaoued.mohamed@gmail.com)
* Dept. of Computer Science, Univsersité 20 Août 1955, Skikda, Algeria (mazouzi_smaine@yahoo.fr, webmaster@univ-skikda.dz)

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 ISSN 1976-913X (Print)
http://dx.doi.org/10.3745/JIPS.03.0058 ISSN 2092-805X (Electronic)

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 645

Therefore, they are structured according to a common executable file format called PE (portable
executable) [5] (see Section 2).

Efficiently protecting computers against malware attacks has become vital for companies,
corporations, and individuals. Unfortunately, the existing commercial antivirus (AV) software is unable
to provide the required level of protection. Techniques used by most AVs are signature-based. A
signature is a short and unique string of bytes, which is recorded in the signature’s database for each
known malware so that future examples of it can be correctly classified with a small error rate. Such
techniques suffer from two major drawbacks: First, they need to have a prior knowledge of malware by
their signatures. Therefore, they are unable to detect unknown or newly launched (zero-day) ones [6,7].
Second, they are inefficient against metamorphic malware (i.e., variants of known malware) [6,8].
Recently, AV software has become more effective by using more sophisticated analysis techniques.
However, there is still the problem of delay, which can vary from a few hours to several days, between
the detection of a new malware and the updating of the viral databases by the AV firms [7,9,10]. During
this period, the malware could cause considerable damages.

In the last decade, researchers employed more sophisticated malware detection methods, such as
behavioral and heuristic analyses [11,12], as an alternative to signature-based ones. Behavioral analysis,
which is also known as dynamic analysis, consists of observing the behavior of a program at runtime, by
monitoring its execution in an isolated environment (Sandbox or virtual machine). During the
monitoring process, the actions that the program accomplishes (such as library uses, kernel calls,
network traffic, and registry updates) are recorded and used to generate features for classifying the
program (malware or benign). The main advantage of dynamic analysis is that it can detect unknown
and metamorphic malware [10]. However, new evasive methods that can detect the analysis
environment and completely stop the execution of the malware code or delay the execution of its
malicious content until the monitoring process is terminatedhave been introduced. Note that the
monitoring process is run for a couple of minutes at most, which itself is inconvenient since it cannot
observe the entire capabilities of a given program as not all execution paths can be explored [10].
Furthermore, such techniques are not suitable for real-time purposes.

On the other hand, heuristic-based analysis uses data mining and machine learning techniques to
learn the behavior of the program [11]. Such techniques investigate different file features, such as
Opcode instructions, structural information, and APIs. These sets of information are represented in
different forms (e.g., control flow graphs, n-grams, etc.) and are used as features for the classification
process, which is generally done using different classifiers, such as decision trees and Bayes algorithm.
API calls were widely used for constructing anti-malware systems [6,8,10,13-16], since they can provide
valuable information related to the possible behaviors that a given program could have [16]. Indeed, the
operating system provides APIs to user applications allowing them to request its services. Also, some
authors [12] have investigated structural information due to its robustness against code obfuscation
techniques, such as packing.

The heuristic-based anti-malware systems are able to detect unknown and metamorphic malware
[11,17]. They are also easy to implement compared to the behavioral ones. However, heuristic-based
systems suffer from the inconvenience of their high false positive rate (i.e., benign programs that are
wrongly detected as malware) [11]. In order to overcome this drawback, most of the existing systems
combine a large number of different types of features [11]. This can lead to intensive computations and

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

646 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

increase the processing time. Due to that, most of the actual heuristic-based anti-malware systems are
inadequate for real-time detection, which is a suitable characteristic, especially in a dynamic
environment (i.e., a malware analysis environment). Therefore, being able to find an appropriate
balance between accuracy and detection time is a real challenge when constructing anti-malware
systems.

In this work, we introduce an efficient heuristic-based PE-malware detection system, which has a
real-time response and a low false alarm rate. The proposed system is composed of a feature extraction
module, a pre-processing module, a feature selection module, and a decision module. The feature
extraction module statically (i.e., without running the program) extracts the set of API calls from the
Import Address Table (IAT), and the technical PE features (TPF) from the PE-optional header (see
Section 2). The feature selection module is based on the KHI² test, which is a statistical method used for
hypothesis testing [18]. We introduce the Phi (φ) measure for feature set reduction, which means that
the decision will be taken according to the most significant features. The latter allows for a real-time
response. The decision module is based on different data mining based classifiers that have been
implemented in the Waikato Environment for Knowledge Analysis (WEKA) [19]. For experimentation
purposes, we used two sets of files — a benign set and a malware set — that we obtained from well-known
dedicateddatabases. To the best of our knowledge, our work is the first to use a combination of the
KHI² measure and the φ coefficient as a feature reduction method and to use this combination with a
hybridization of features (APIs + TPFs).

This paper is organized as follows: in Section 2, we introduce the PE file format and its structure, in
order to facilitate comprehension about the rest of the sections. Section 3 is devoted to the best-known
related works, published in the literature. In Section 4, we present the proposed malware detection
system, and in Section 5 we present our experimental results. In Section 6, we introduce our analysis of
the obtained results, and we compare the performance of our system with the existing ones. Section 7
concludes our work and underlines its perspectives.

2. PE File Format

PE is the common file format for binary executables and DLLs in Windows OS. A PE file is mainly
composed of an MS-DOS header, PE header, and Section headers (section table), and a set of sections
[5], as shown in Fig. 1.

Fig. 1. Simplified PE-file structure.

MS-DOS header

PE-header

Section table

Sections :
Section 1
Section 2

…
Section n

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 647

 The MS-DOS header is located at the beginning of the PE-file and it is used to check whether it is
a valid executable or not, when the file is run under DOS.

 The PE-header contains some important pieces of information about the PE-file. The PE-header
is an IMAGE_NT_HEADERS data structure that contains three members, which are signature,
file header, and the optional header (Fig. 2).

 The PE-optional headerisan IMAGE_OPTIONAL_HEADER structure, and it is composed of
several fields, such as Magic, MajorLinkerVersion, and CheckSum [5]. One of the PE-optional
header fields is the data directory, which is an array of 16 IMAGE_DATA_DIRECTORY
structures. One of these structures is the IMAGE_DIRECTORY_ENTRY_IMPORT, which
contains information about all the imports (DLLs/APIs). The import entry points to a vector of
IMAGE_IMPORT_DESCRIPTOR structures. The field “OriginalFirstThunk” of the latter
structure contains an RVA (Relative Virtual Address), which points to the IAT, as shown in Fig.
2. The IAT is an array of function pointers that contains elements of IMAGE_THUNK_DATA
structures. Each structure corresponds to an imported API, and they contain the ordinal of a
function or an RVA to an IMAGE_IMPORT_BY_NAME structure. The latter contains the names
of the APIs that the code calls.

Fig. 2. Structure of the PE-optional header and location of the IAT.

3. Related Works

In this section, we provide a brief description of some often-cited works in the literature that have
used APIs, PE features, or a KHI²-based decision to detect malware files.

Schultz et al. [16] introduced the first anti-malware system based on machine learning techniques.
They investigated different information in the PE file, such as strings, API functions, and byte sequence.
They used a classification method based on the naïve Bayes algorithm, and they obtained an overall
accuracy of 97.11%. The method introduced in [13] uses naïve Bayes classification with API calls. The
extracted APIs were used to construct models of suspicious behaviors, by grouping some APIs based on
scenarios that a malware can accomplish, such as searching for a file to infect and writing malicious
data into it. They obtained 93.7% accuracy.

Ye et al. [6] proposed CIMDS, which is an improvement of their previous malware detection system
called IMDS (Intelligent Malware Detection System) [8]. As its predecessor, CIMDS is based on Object

Data directory
Export table
Import table

Ressource table
Exception table

…
Import address table

…

Optional header
Address of entry point

ImageBase
Section alignment

File alignment
…

Size of headers
Data directory

PE header
Signature

File header
Optional header

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

648 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

Oriented Association (OOA) mining. They used the KHI² method for rule pruning (removing
insignificant rules), rule ranking (from most significant to least significant), and rule selection (best
nAPIs). CIMDS was the first work that used post-processing techniques. The system achieved 67.5%
accuracy and 88.16% detection rate, which still needs improvements. However, it has a very good
detection time with 0.09 seconds per file. The authors in [14] also presented a malware detection system
based on OOA mining and API calls. They proposed a feature selection method to reduce the number
of obtained APIs by selecting the top 1,000 ones based on two criteria, which are document frequency
and information gain. The system achieved 91.2% accuracy and a detection rate of 97.3%.

The authors in [17] combined the KHI² test andthehidden Markov model (HMM) for detecting
malware using an Opcode sequence. They extracted Opcode from the analyzed files using the third
party disassembler IDA Pro. They used the KHI² test to identify the set of instructions that are most
likely to be used by the NGVCK malware generator to generate malware variants. They then learned the
HMM using the set of obtained instructions in order to categorize the files. They tested their method on
200 malware and 40 benign programs. Their proposed system had an overall accuracy of 91%. The
drawback of this method is the usage of a closed source disassembler (IDA Pro), which makes their
system not fully automatic. Moreover, their analysis was limited to malware that is generated using
NGVCK.

The method described in [15], extracts API calls and compares them to previously constructed
models of malicious APIs stored in a signature’s database. A similarity measure between the extracted
model and the existing one was calculated by combining three different metrics, which are cosine
similarity, extended Jaccard measure, and Pearson correlation. After that, they selected the most
relevant features using a weighting scheme. The weight of an API was obtained by calculating the
product of two metrics, which are term frequency and inversed document frequency. The classification
phase was based on a Support Vector Machine (SVM) classifier and they obtained an overall accuracy
of 91.5%.

The authors in [10] proposed a malware detection system that is based on analyzing API functions
and their arguments. They used a dynamic feature extraction method using a virtual environment. They
evaluated their method using different classifiers, and they obtained an overall accuracy of 98.1%. Using
arguments requires program being executed. Consequently, this method suffers from the
inconveniences of dynamic approaches, which were previously mentioned.

PE-Miner [12] was introduced as a real-time framework for PE-malware detection. This framework
statically extracts PE-files structural features from the PE header, optional header, etc. The authors
proposed a method based on information gainto select the most relevant features. They evaluated their
framework using five different data mining classifiers. The proposed framework was able to achieve a
detection rate ofmore than 99% and a false alarm rate of about 5%. The categorization process takes an
average of 0.244 seconds per file.

4. Proposed System

Our proposed method for PE-malware categorization is based on the observation that there are some
PE-file features that are specific to malware and others to benign programs. These features appear with
different frequencies between these two categories of PE-files. Therefore, these features must be

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 649

extracted and sorted in a way that we consider to be only the most significant ones that will make a
significant contribution in the benign-malware categorization process. Thus, the statistical KHI² test is
used to estimate the significance (relevance) of these features. Thus, we will provide, at the same time, a
real-time detection of PE-malware and a high specific categorization using small sets of features.

4.1 System Architecture

Our proposed system for malware detection is composed of four different modules, which are the
feature extraction module, pre-processing module, feature selection module, and the decision module,
as shown in Fig. 3.

4.2 Feature Extraction

As mentioned previously, our system relies on the analysis of two different types of features, which
are API calls and some TPFs. The TPFs are represented by the information stored in the PE-optional
header fields. In order to extract these two types of features from a PE file and calculate their
frequencies, we developed a module written in Python that uses a third-party Python module called
Pefile, which is a multi-platform module for reading and working with PE files and extracting different
information from them [20]. This extraction method is based on a static analysis of the IAT for API
calls and the PE-optional header for the TPFs (see Section 2). Given below in Figs. 4 and 5, is an
overview of some lines of Python code that we wrote to extract API calls and TPFs from multiple PE
files contained in a folder named “Malware_Samples.”

Selected APIs and TPFs Result : {Malware, Benign}

APIs+TPFs

APIs+TPFs

APIs+TPFs

APIs+TPFs
API+TPFs

Feature Selection
(KHI²,φ)

Feature Extraction

Pre-processing

Unknown PE
Binaries

Decision
(B-J48)

Feature Extraction

Training Set

Malware PE
Binaries

Benign PE
Binaries

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

650 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

Note that TPFs are represented by concatenating the field’s name with its value (e.g., ‘checksum0’), as
shown in lines 8 and 9 of the above source code (Fig. 5).

Fig. 4. Python source code for extracting API calls (for API in entry.imports) and storing them in APIs
structure (API_LIST).

Fig. 5. Python source code for extracting TPFs (pe.OPTIONAL_HEADER…) and storing them in TPFs
structure (TPF_LIST).

4.3 Pre-processing

After extracting APIs and TPFs using the previous module, the pre-processing module proceeds in
removing duplicated APIs in the same PE file, and then it calculates their call frequencies in malware
and benign files. The module also calculates the frequency of appearances of the obtained TPFs in
malware and benign programs. At the end of this phase we obtained a table composed of three columns
that, respectively, represent the feature’s name, its frequency in malware PE, and its frequency in benign
PE, and a number of rows, which is equal to the number of obtained features (APIs + TPFs) (see
Subsection 5.2).

4.4 Feature Selection

The third module of our system is the feature selection module. It was also developed as a Python
script, and it aims at selecting the most relevant features from the obtained list of APIs and TPFs. This
module is based on a well-known statistical method, which is the KHI² hypothesis test [18]. This
method is used to decide whether there is a significant association between two qualitative variables.
This association is expressed by the distance D between an observed frequency O and an expected one
E, which represents the case of perfect independence between the variables). Therefore, the correlation
strength between two variables is proportional to the distance D. In our case, we studied the association
between two variables: First, the variable “Feature” that has two modalities of “present” and “not

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 651

present.” This variable represents the presence or absence of a feature (API or TPF) in a PE file. Second,
the variable “PE-cat,” which also has the two modalities of “malware” and “benign.” This variable
represents the two categories of PE files, for instance: “malware” and “benign.” When conducting a
KHI² test, we first started by defining the two hypotheses H0 and H1, where one will be accepted and the
other rejected. H0 (null hypothesis) represents the case of independence between the two variables. H1
(alternative hypothesis) represents the case of dependency between the two variables. In our case, H0

and H1 are defined as follows:
 H0 : The presence or absence of a feature (API, TPF) is independent of the PE file’s type (malware

or benign).
 H1 : The presence or absence of a feature (API, TPF) is related to the PE file’s type (malware or

benign).

For each feature F, we had a contingency table, as shown in Table 1.

Table 1. Contingency table of a feature F
Feature: present Feature: not present Row total

PE-cat: malware M1 M2 M
PE-cat: benign N1 N2 N
Column total M1+N1 M2+N2 T

We describe below the different variables presented in Table 1.

 M and N are, respectively, the total number of malware and benign PE files.
 T is the total number of used PE files (T=M+N).
 M1 is the number of malware PE files that contain F, and M2 is the number of malware PE files

that do not contain F, such as M=M1+M2.
 N1 is the number of benign PE files that contain F, and N2 is the number of benign PE files that

do not contain F, such as N= N1+N2.

Based on the contingency table (Table 1), the KHI² score (D²) is calculated using Eq. (1).
ଶܦ = ∑ (ைೝ,೎ିாೝ,೎)మாೝ,೎ 																																																																	(1)

where, Or,c is the observed frequency count at level r of the row variable and level c of the column
variable. And Er,c is the expected frequency, which is defined by the following equation :

௥,௖ܧ = ௡ೝ×௡೎் 																																																																			(2)

where, nr and nc are, respectively, the sum of row r and the sum of column c. After calculating the KHI²
values for the extracted features, we had to determine which of the two hypotheses H0 or H1 would be
accepted or rejected for every feature. To do that, we compared the obtained KHI² values (D²) of every
feature to a threshold, which represents the theoretical KHI² value (χ²), and H0 was accepted (H1
rejected) for every feature that had D²≤ χ². Note that according to the KHI² hypothesis test, the features

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

652 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

for which H0 is accepted are considered to be irrelevant and will be systematically removed. The χ² value
is obtained by first calculating the degree of freedom (DF), and choosing a signification level α that
represents the probability of rejecting a hypothesis even if is true. Considering DF and α, the χ² value is
obtained from the KHI² distribution table [21]. DF is calculated as follows:

ܨܦ = (ܴ − 1) × ܥ) − 1) (3)

where R and C represent, respectively, the number of modalities of the first and the second variables.
After removing all the features that are not correlated, which correspond to the case where H0 is
accepted, we calculated the φ coefficient for the remaining features. The φ coefficient [22] is a
normalization of the KHI² score (D²), which can only be applied to a 2×2 contingency tables (two
variables with two modalities). It is used to measure the strength of the dependency between the two
variables [23]. In our work, this coefficient was used to group features in subsets according to their
correlation strength (relevance). φ is calculated as follows:
 φ = ට஽మ்

 (4)

The value of φ ranges between 0 and 1, and the relevance of a feature (API or TPF) is proportional to

that value. Therefore, we chose to use three subsets that would contain features that have φ≥0.25, φ≥0.5, and φ≥0.75, respectively. Our aim was to be able to identify the optimal number of features
required to have the highest accuracy, which also helps to reduce the detection time.

4.5 Decision

After generating the different features’ subsets from the previous module, we had to identify which of
the APIs or TPFs or combinations of them provided the best results (i.e., high accuracy and low
detection time). Therefore, we first evaluated our system using TPFs subsets. We then used APIs
subsets, and, finally, we evaluated it by trying every possible combination of the TPFs-APIs subsets. We
used different classification algorithms available in WEKA, which are the decision tree (J48) [19],
boosted decision tree (B-J48) using the AdaBoostM1 algorithm [19], Rotation Forest (Rot-F) [24], and
Random Forest (Ran-F) [25]. Our decision module took the features’ subsets generated from the feature
selection module and the set of extracted ones from the analyzed fileas input. Both are represented as
WEKA data files (.arff file) [19], which are automatically generated using a Python script.

5. Experimentation

5.1 Dataset

For experimentation purposes, we collected a dataset composed of 552 PE files (338 malware and 214
benign programs), of 80% were used as the training set and 20% as the test set. The infected PE files
were downloaded from Vxheavens.com and contained 12 different malware categories, as shown in
Table 2.

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 653

Table 2. Malware dataset
No. Malware type Counts

1 Backdoor 27
2 Email-Worm 19
3 Exploit 28
4 Hacktool 22
5 Net-Worm 16
6 P2P-Worm 17
7 Trojan 59
8 Trojan-Downloader 24
9 Trojan-Dropper 32

10 Trojan-Spy 18
11 Virus 42
12 Worm 34

Total 338

The benign PE files include some utility software that was downloaded from Softpedia.com, and also

some Windows system files that were collected from a clean installation of Windows XP. In our work,
we only considered non-packed (non-compressed) programs. Packing is a method that is legitimately
used by software developers to protect their programs from reverse engineering, and malware creators
use it to hide the malicious code from being detected by AV software [26]. Therefore, we analyzed our
dataset using well-known Packers detection tools, such as PEiD, and ProtectionID. These tools are able
to detect a large variety of packers, including popular ones like UPX, ASPack, and PECompact. Note
that packed binaries are the only category that was excluded from our samples. We also scanned all the
files using more than 40 different AVs from the website VirusTotal.com. More than 30 AVs identified
the infected PE files that were used as malware, and none of the benign PE files were identified as
malware.

5.2 Results

In this subsection, we present the results obtained from the feature extraction phase to the decision
phase. After the feature extraction and pre-processing phases, we obtained the results presented in
Tables 3 and 4.

Table 3. Overview of the obtained TPFs

No. Optional-header field Value
Frequency

Malware (271) Benign (172)
1 BaseOfCode 4096 271 (100) 172 (100)
2 BaseOfData 102400 4 (1) 1 (1)
3 BaseOfData 106496 3 (1) 1 (1)
4 BaseOfData 110592 1 (1) 0 (0)
5 BaseOfData 118784 2 (1) 0 (0)

… … … … …
586 SizeOfUninitializedData 802816 1 (1) 0 (0)
587 SizeOfUninitializedData 8192 1 (1) 0 (0)
588 SizeOfUninitializedData 95744 1 (1) 0 (0)
589 Subsystem 2 226 (83) 106 (62)
590 Subsystem 3 45 (17) 66(38)

Data are presented as number (%).

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

654 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

Table 4. Overview of the obtained APIs

No. API name
Frequency

Malware (271) Benign (172)
1 Abort 4 (1) 1 (1)
2 Accept 21 (8) 0 (0)
3 Ace_Cleanup_Destroyer 1 (1) 0 (0)
4 ActivateKeyboardLayout 63 (23) 4 (2)
5 AddAccessAllowedAce 1 (1) 18 (10)

… … … …
1636 xml_setcharacterdatahandler 1 (1) 0 (0)
1637 xml_setelementhandler 1 (1) 0 (0)
1638 xml_setuserdata 1 (1) 0 (0)
1639 zwquerysysteminformation 1 (1) 0 (0)
1640 zwunmapviewofsection 1 (1) 0 (0)

Data are presented as number (%).

We calculated the KHI² values for the obtained APIs and TPFs and removed the irrelevant ones that
had KHI² ≤ 3.84 (3.84 is the χ² value for DF=1 and alpha=0.05). Thus, H0 was rejected and H1 was
accepted for 681 APIs and 50 TPFs, and H0 was accepted and H1was rejected for 959 APIs and 540
TPFs. The results are presented in Tables 5 and 6.

Table 5. Overview of the obtained KHI² and φ values for the selected TPFs

No. TPFs KHI² ૎
1 CheckSum0 375.21 0.92
2 MajorImageVersion0 370.57 0.91
3 DllCharacteristics0 355.91 0.9
4 MajorOperatingSystemVersion5 346.02 0.88
5 MinorOperatingSystemVersion0 341.92 0.88

… … … …
46 BaseOfData49152 4.03 0.1
47 SizeOfImage28672 3.95 0.09
48 MinorLinkerVersion55 3.86 0.09
49 SizeOfImage163840 3.86 0.09
50 SizeOfInitializedData28672 3.86 0.09

Table 6. Overview of the obtained KHI² and φ values for the selected APIs

No. APIs KHI² ૎
1 __p__commode 254.59 0.76
2 __setusermatherr 254.59 0.76
3 _exit 254.59 0.76
4 _xcptfilter 254.59 0.76
5 _controlfp 245.57 0.74

… … … …
677 Getenhmetafiledescriptiona 3.86 0.09
678 GetSockName 3.86 0.09
679 Ischaralphaa 3.86 0.09
680 Ntohl 3.86 0.09
681 GetCurrentThread 3.85 0.09

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 655

As mentioned previously, we obtained a final list of 681 APIs and 50 TPFs with their corresponding
KHI² scores and φ values, as shown in Tables 5 and 6. We divided these features into different groups
(subsets) according to their φ values. At the end of the feature selection phase, we obtained three
subsets for APIs, which are A1, A2, and A3, and three subsets for TPFs, which are H1, H2, and H3. The
latter subsets correspond, respectively, to the three φ	values, which are φ≥0.75, φ≥0.5, and φ≥0.25. We
obtained 5, 31, and 297 APIs in A1, A2, and A3, respectively. We also obtained 11, 14, and 22 TPFs in
H1, H2, and H3. We used a fourth subset for both APIs (A4) and TPFs (H4) that contained all of the
extracted features (1,640 APIs and 590 TPFs). The purposed of using these two additional subsets was
to see whether the proposed feature selection method improved our system’s performance or not.

In the next subsection, we evaluate our system’s performance by using different classifiers with the
obtained features’ subsets and see which subset or combination of subsets generates the best results.

5.3 Evaluation

Our experiments were conducted on a Windows 7 OS, I3-2350M 2.30 GHZ CPU, and 4GB of RAM
computer. The feature extraction, pre-processing, and selection modules were implemented in Python
27. The decision module was implemented in WEKA 3.7.

The performance of a malware detection system is generally evaluated according to three different
metrics, as discussed below.

 Detection rate (DR): This represents the percentage of malware detectedamong all malware of the

given test set, and it is calculated using Eq. (5):
 DR = ே௨௠௕௘௥	௢௙	ௗ௘௧௘௖௧௘ௗ	௠௔௟௪௔௥௘்௢௧௔௟	௡௨௠௕௘௥	௢௙	௠௔௟௪௔௥௘ × 100% (5)

 False alarm rate (FA): This is the percentage of benign files wrongly classified as malware among
all the benign files of the given test set, and it is calculated using Eq. (6):

FA= ே௨௠௕௘௥	௢௙	௕௘௡௜௚௡	௙௜௟௘௦	௖௟௔௦௦௜௙௜௘ௗ	௔௦	௠௔௟௪௔௥௘்௢௧௔௟	௡௨௠௕௘௥	௢௙	௕௘௡௜௚௡	௙௜௟௘௦ × 100%																																					(6)

 Accuracy (AC): This represents the rate of files that were correctly classified in their class, and it
is calculated using Eq. (7):

 AC = ே௨௠௕௘௥	௢௙	௖௢௥௥௘௖௧௟௬	௖௟௔௦௦௜௙௜௘ௗ	௙௜௟௘௦்௢௧௔௟	௡௨௠௕௘௥	௢௙	௙௜௟௘௦ × 100% (7)

Since we want to achieve a real-time detection of malware, we must take into consideration the
detection time (DT) as a fourth metric to evaluate our system’s performance. DT represents the average
time required for categorizing a given PE file from our test set, and it is expressed in seconds per file.
The obtained results are presented in Tables 7–9.

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

656 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

Table 7. Experimental results using TPFs subsets
Subset ૎ TPF counts Classifier DR (%) FA (%) AC (%) DT (S)

H1 ≥0.75 11

J48 100 9.52 96.33 0.074
B-J48 100 9.52 96.33 0.076
Ran-F 100 9.52 96.33 0.074
Rot-F 98.51 7.14 96.33 0.074

H2 ≥0.5 14

J48 98.51 9.52 95.41 0.074
B-J48 97.01 7.14 95.41 0.074
Ran-F 100 9.52 96.33 0.074
Rot-F 100 7.14 97.25 0.077

H3 ≥0.25 22

J48 98.51 9.52 95.41 0.074
B-J48 95.52 9.52 93.58 0.074
Ran-F 98.51 7.14 96.33 0.074
Rot-F 98.51 9.52 95.41 0.076

H4 - 590

J48 98.51 9.52 95.41 0.081
B-J48 85.07 4.76 88.99 0.086
Ran-F 89.55 4.76 91.74 0.081
Rot-F 97.01 7.14 95.41 0.116

We can see from the results presented in the table above that our system has the highest AC with the

subset H2 (97.25%), with an improvement of 1.84% compared with the obtained AC using the subset
H4 (no feature selection). In addition, the average detection time was also reduced (-0.004s).

Table 8. Experimental results using APIs subsets

Subset ૎ API counts Classifier DR (%) FA (%) AC (%) DT (S)

A1 ≥0.75 5

J48 100 28.57 88.99 0.076
B-J48 100 28.57 88.99 0.076
Ran-F 100 28.57 88.99 0.076
Rot-F 100 28.57 88.99 0.076

A2 ≥0.5 31

J48 95.52 11.90 92.66 0.078
B-J48 97.01 7.14 95.41 0.078
Ran-F 98.51 14.29 93.58 0.078
Rot-F 98.51 7.14 96.33 0.081

A3 ≥0.25 297

J48 94.03 11.90 91.74 0.087
B-J48 97.01 9.52 94.50 0.087
Ran-F 98.51 14.29 93.58 0.086
Rot-F 97.01 9.52 94.50 0.110

A4 - 1640

J48 95.52 9.52 93.58 0.138
B-J48 97.01 9.52 94.50 0.147
Ran-F 100 11.90 95.41 0.136
Rot-F 97.01 9.52 94.50 0.343

The results presented in Table 8 show that our system is more accurate with the subset A2 and Rot-F
classifier. Compared with the subset A4 there was an improvement of 1.27%. The detection time was
reduced by 40% from 0.136s (A4+Ran-F) to 0.081s (A2+Rot-F). By comparing the results in Table 7
and Table 8, we can see that TPFs provided a better accuracy (97.28%) compared with APIs (96.20%),
and a better detection time (-0.004s). Next, we combined both APIs and TPFs in order to increase
accuracy. The results are presented in Table 9 and include only the best classifier scores.

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 657

As can be seen from the obtained results, we were able to improve the accuracy of our system,
compared with TPFs only (+0.67%) and APIs only (+1.84%), and that by combining H2 and A3 subsets
using B-J48. Furthermore, we were able to keep a good detection time with an average of 0.090 s. We
were also able to achieve the same accuracy with the combination of H3 and A3 subsets using the same
classifier, but with a detection time of 0.092 s. Therefore, we prefer to consider the first combination
(H2+A3). From the results previously presented, we can conclude that the proposed feature selection
method made a very important contribution in increasing the system’s accuracy and in reducing the
detection time.

Table 9. Experimental results (best classifier) using combinations of API-TPF subsets

Subset Classifier DR (%) FA (%) AC (%) DT (S)
H1+A1 B-J48 100 9.52 96.33 0.080
H1+A2 J48 100 7.14 97.25 0.080
H1+A3 Ran-F 100 9.52 96.33 0.089
H1+A4 Rot-F 98.51 7.14 96.33 0.333
H2+A1 B-J48 97.01 7.14 95.41 0.079
H2+A2 B-J48 95.52 7.14 94.50 0.080
H2+A3 B-J48 100 4.76 98.17 0.090
H2+A4 B-J48 98.51 4.76 97.25 0.145
H3+A1 Rot-F 100.00 7.14 97.25 0.081
H3+A2 B-J48 95.52 7.14 94.50 0.080
H3+A3 B-J48 100 4.76 98.17 0.092
H3+A4 B-J48 98.51 4.76 97.25 0.157
H4+A1 Rot-F 98.51 7.14 96.33 0.148
H4+A2 J48 98.51 7.14 96.33 0.103
H4+A3 B-J48 97.01 9.52 94.50 0.124
H4+A4 B-J48 98.51 4.76 97.25 0.187

6. Comparison and Discussion

In this section, we evaluate the efficiency of our system by comparing our obtained results to those of
the previously cited systems, as presented in Table 10 and Fig. 6.

Table 10. Comparison of our results with previously cited methods having used the same evaluation metrics

Method Features used DR (%) AC (%)
Our method API + TPFs 100 98.17
CIMDS [6] API 88.16 67.50
Ding et al. [14] API 97.30 91.20
Salehi et al. [10] API + Arguments 99.20 98.40
Schultz et al. [16] Strings 97.43 97.11
Wang et al. [13] API 94.40 93.71

From the results presented in the above table, is can be seen that our system outperforms four of the

five presented systems in terms of accuracy, with an improvement that varies from 1.06% to 30.67%.
The method proposed by Salehi et al. [10] had a better accuracy than our method with an improvement
rate of 0.23%. However, our system has the best detection rate compared to all of these systems.

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

658 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

Fig. 6. Histogram comparing our system’s AC and DR with those of the previously cited ones.

Considering the detection time (categorization time), we can conclude that our system is adequate for

the real-time detection of malware, since it only requires 0.090s for the whole categorization process.
Our system has the same detection time as CIMDS [6], and it is almost three times faster than PE-
Miner [12], as the latter takes 0.244s to categorize a file.

Our proposed feature extraction and pre-processing method took 0.040s, 0.037s, and 0.041s for APIs,
TPFs, and APIs + TPFs, respectively. These results are very satisfying compared with the method used
in [10], which needs to monitor the analyzed program for two minutes in order to extract the API calls
and their arguments, which is almost 3,000 times the amount of time required for our proposed
method.

The time cost for generating the .arff file depends on the number of features used. For instance, it
took 0.037s with A1+H1, 0.049s with H3+A3, and 0.142s for H4+A4. Note that the arff file generation
process is related to the usage of the WEKA environment. Therefore, its time cost was not taken into
consideration when the classifier was directly implemented and integrated in our system.

The time cost for the classification process depends on the number of used features and the
classification method. For instance, with H1+A1 subsets and the B-J48 classifier, the classification
process took 0.001s, with H2+A3 using the same classifier it took 0.004s, and using the Rot-F classifier it
took 0.119s.

7. Conclusion and Future Works

In this work, we have presented a fast PE-malware detection system that is based on the analysis of
API calls and TPFs. The KHI² test was used as the feature selection method and was combined with the
φ coefficient, which was used to select the optimal number of features. Different classification
algorithms were used to evaluate our system. The results show that our system is more accurate when
the APIs and TPFs are combined using a B-J48 classifier, as we achieved an overall accuracy of 98.27%.
Our system is automatic and can be used for the real-time detection of malware. As for future work, we
will try to increase the accuracy of our system by combining other types of features and at the same
time, we will try to keep the same rapidity. We alsointend to study the different API associations that
are specific to the different malware categories, which will allow for the multiclass categorization of
malware.

0%

20%

40%

60%

80%

100%

DR AC

Our method

CIMDS [6]

Ding et al. [14]

Salehi et al. [10]

Schultz et al. [16]

Wang et al. [13]

Mohamed Belaoued and Smaine Mazouzi

J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016 | 659

References

[1] C. V. Zhou, C. Leckie, and S. Karunasekera, “A survey of coordinated attacks and collaborative intrusion
detection,” Computers & Security, vol. 29, no. 1, pp.124-140, 2010.

[2] McAfee threat report: first quarter 2013 [Online]. Available: http://www.mcafee.com/uk/resources/reports/rp-
quarterly-threat-q1-2013.pdf.

[3] McAfee Labs threats report: first quarter 2014 [Online]. Available: http://www.mcafee.com/uk/resources/
reports/rp-quarterly-threat-q1-2014.pdf.

[4] W3Schools, “OS platform statistics,” [Online]. http://www.w3schools.com/browsers/browsers_os.asp.
[5] M. Pietrek, “Peering inside the PE: a tour of the win32 portable executable file format,” Microsoft Systems

Journal, vol. 9, no. 3, pp. 15-38, 1994.
[6] Y. Ye, T. Li, Q. Jiang, and Y. Wang, “CIMDS: adapting postprocessing techniques of associative classification for

malware detection,” IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, vol.
40, no. 3, pp. 298-307, 2010.

[7] A. Shabtai, R. Moskovitch, Y. Elovici, and C. Glezer, “Detection of malicious code by applying machine learning
classifiers on static features: a state-of-the-art survey,” Information Security Technical Report, vol. 14, no. 1, pp.
16-29, 2009.

[8] Y. Ye, D. Wang, T. Li, D. Ye, and Q. Jiang, “An intelligent PE-malware detection system based on association
mining,” Journal in Computer Virology, vol. 4, no. 4, pp. 323-334, 2008.

[9] “Anti-malware vendors slow to respond,” Computer Fraud & Security, vol. 2010, no. 6, pp. 1-2, 2010.
[10] Z. Salehi, A. Sami, and M. Ghiasi, “Using feature generation from API calls for malware detection,” Computer

Fraud & Security, vol. 2014, no. 9, pp. 9-18, 2014.
[11] Z. Bazrafshan, H. Hashemi, S. M. H. Fard, and A. Hamzeh, “A survey on heuristic malware detection

techniques,” in Proceedings of the 5th Conference on Information and knowledge Technology (IKT), Shiraz, Iran,
2013, pp. 113-120.

[12] M. Z. Shafiq, S. M. Tabish, F. Mirza, and M. Farooq, “Pe-miner: mining structural information to detect
malicious executables in realtime,” in Proceedings of the 12th International Symposium on Recent Advances in
Intrusion Detection, Saint-Malo, France, 2009, pp. 121-141.

[13] C. Wang, J. Pang, R. Zhao, and X. Liu, “Using API sequence and Bayes algorithm to detect suspicious behavior,”
in Proceedings of the International Conference on Communication Software and Network, Macau, China, 2009,
pp. 544-548.

[14] Y. Ding, X. Yuan, K. Tang, X. Xiao, and Y. Zhang, “A fast malware detection algorithm based on objective-
oriented association mining,” Computers & Security, vol. 39, pp. 315-324, 2013.

[15] M. K. Shankarpani, K. Kancherla, R. Movva, and S. Mukkamala, “Computational intelligent techniques and
similarity measures for malware classification,” in Computational Intelligence for Privacy and Security.
Heidelberg: Springer, 2012, pp. 215-236.

[16] M. G. Schultz, E. Eskin, F. Zadok, and S. J. Stolfo, “Data mining methods for detection of new malicious
executables,” in Proceedings of the IEEE Symposium onSecurity and Privacy, Oakland, CA, 2001, pp. 38-49.

[17] H. Toderici and M. Stamp, “Chi-squared distance and metamorphic virus detection,” Journal of Computer
Virology and Hacking Techniques, vol. 9, no. 1, pp. 1-14, 2013.

[18] P. Fornasini, “The chi square test,” in The Uncertainty in Physical Measurements. New York: Springer, 2008, pp.
187-198.

[19] H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 3rd ed. Burlington,
MA: Morgan Kaufmann Publishers, 2011.

[20] pefile [Online], http://code.google.com/p/pefile/.
[21] S. Kokoska and C. Nevison, Statistical Tables and Formulae. New York: Springer, 1989.

A Chi-Square-Based Decision for Real-Time Malware Detection Using PE-File Features

660 | J Inf Process Syst, Vol.12, No.4, pp.644~660, December 2016

[22] B. Chedzoy, “Phi-coefficient,” in Encyclopedia of Statistical Sciences, 2nd ed. Hoboken, NJ: Wiley, 2006.
[23] D. P. Farrington and R. Loeber, “Relative improvement over chance (RIOC) and phi as measures of predictive

efficiency and strength of association in 2×2 tables,” Journal of Quantitative Criminology, vol. 5, no. 3, pp. 201-
213, 1989.

[24] J. Rodriguez, L. I. Kuncheva, and C. J. Alonso, “Rotation forest: A new classifier ensemble method,” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 10, pp. 1619-1630, 2006.

[25] L. Breiman, “Random forest,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
[26] A. Singh and A. Lakhotia, “Game-theoretic design of an information exchange model for detecting packed

malware,” in Proceedings of the 6th International Conference on Malicious and Unwanted Software (MALWARE),
Fajardo, Puerto Rico, 2011, pp. 1-7.

Mohamed Belaoued http://orcid.org/0000-0002-9412-1959

He received his B.A. and M.A. degrees both in computer science from the University
of Skikda, Algeria in 2009 and 2011, respectively. He is now and since 2011 a PhD
student within the department of computer science of the same university. His main
research interests include computer security, distributed systems, and data mining.

Smaine Mazouzi

He is an associate professor at 20 Août 1955 University of Skikda. He received his
M.S. and Ph.D. degrees in Computer Science from University of Constantine,
respectively, in 1996 and 2008. His fields of interest are pattern recognition, machine
vision, and computer security. His current research concerns using distributed and
complex systems modeled as multi-agent systems in image understanding and
intrusion detection.

