최근 모바일 인터넷 이용률이 급증하면서 인터넷 이용자의 웹 브라우저를 통한 사회 공학적 또는 드라이브 바이 다운로드 방식으로 악성코드 유포 공격이 확산되고 있다. 현재 드라이브 바이 다운로드 공격 방어 초점은 최종 다운로드 사이트 및 유포 경로에 초점을 두어 진행되어 왔으나 공격 초기 악성코드를 주입하는 인젝션 사이트에 대한 특성 탐지 및 차단에 대해서는 충분히 연구되지 않았다. 본 논문에서는 이러한 악성 코드 다운로드 공격에 대한 방어메커니즘 향상을 목적으로, 악성코드 다운로드의 핵심 근원지인 인젝션 사이트를 탐지하는 방안에 대해서 연구한다. 결과적으로 악성코드의 확산을 방지하기 위해 다운로드 공격의 최종 사이트를 탐지 및 차단하는 현재의 URL 블랙리스트 기법에 추가하여, 악성코드를 주입하는 인젝션 사이트를 탐지 특징을 추출 하는 방안을 제시한다. 또한 URL 블랙리스트 기반의 접근법과 비교하여 악성코드 감염률을 효율적으로 최소화 할 수 있는 방안임을 보인다.
본 논문에서는 현재 스마트폰에서 자주 사용하고 있는 QR-Code에 대해서 악의적인 변형 코드 및 올바르지 않은 URL로의 접속 등에 의해 개인정보 유출 등의 피해를 막기 위한 방법을 연구한다. QR-Code를 디코딩하여 URL 접속 시에 직접적인 필터링은 어려우므로 접속하기 전 해당 QR-Code를 디코딩하여 나온 결과와 원래의 URL을 비교할 수 있는 서버를 만들어 그 서버에 접속하여 스마트폰 사용자에게 접속 여부를 통지해주는 시스템을 구축해보아 스마트폰 사용자들에게 도움이 되고자 한다.
Chuang, Yung-Ting;Melliar-Smith, P. Michael;Moser, Louise E.;Lombera, Isai Michel
Journal of Computing Science and Engineering
/
제6권3호
/
pp.179-192
/
2012
This paper presents novel statistical algorithms for protecting the iTrust information retrieval network against malicious attacks. In iTrust, metadata describing documents, and requests containing keywords, are randomly distributed to multiple participating nodes. The nodes that receive the requests try to match the keywords in the requests with the metadata they hold. If a node finds a match, the matching node returns the URL of the associated information to the requesting node. The requesting node then uses the URL to retrieve the information from the source node. The novel detection algorithm determines empirically the probabilities of the specific number of matches based on the number of responses that the requesting node receives. It also calculates the analytical probabilities of the specific numbers of matches. It compares the observed and the analytical probabilities to estimate the proportion of subverted or non-operational nodes in the iTrust network using a window-based method and the chi-squared statistic. If the detection algorithm determines that some of the nodes in the iTrust network are subverted or non-operational, then the novel defensive adaptation algorithm increases the number of nodes to which the requests are distributed to maintain the same probability of a match when some of the nodes are subverted or non-operational as compared to when all of the nodes are operational. Experimental results substantiate the effectiveness of the detection and defensive adaptation algorithms for protecting the iTrust information retrieval network against malicious attacks.
International Journal of Computer Science & Network Security
/
제22권8호
/
pp.275-279
/
2022
The growth of technology nowadays has made many things easy for humans. These things are from everyday small task to more complex tasks. Such growth also comes with the illegal activities that are perform by using technology. These illegal activities can simple as displaying annoying message to big frauds. The easiest way for the attacker to perform such activities is to convenience user to click on the malicious link. It has been a great concern since a decay to classify URLs as malicious or benign. The blacklist has been used initially for that purpose and is it being used nowadays. It is efficient but has a drawback to update blacklist automatically. So, this method is replace by classification of URLs based on machine learning algorithms. In this paper we have use four machine learning classification algorithms to classify URLs as malicious or benign. These algorithms are support vector machine, random forest, n-nearest neighbor, and decision tree. The dataset that is used in this research has 36694 instances. A comparison of precision accuracy and recall values are shown for dataset with and without preprocessing.
Park, Hweerang;Cho, Sang-Il;Park, Jungkyu;Cho, Youngho
한국컴퓨터정보학회논문지
/
제24권5호
/
pp.27-33
/
2019
One of serious security threats is a botnet-based attack. A botnet in general consists of numerous bots, which are computing devices with networking function, such as personal computers, smartphones, or tiny IoT sensor devices compromised by malicious codes or attackers. Such botnets can launch various serious cyber-attacks like DDoS attacks, propagating mal-wares, and spreading spam e-mails over the network. To establish a botnet, attackers usually inject malicious URLs into web source codes stealthily by using data hiding methods like Javascript obfuscation techniques to avoid being discovered by traditional security systems such as Firewall, IPS(Intrusion Prevention System) or IDS(Intrusion Detection System). Meanwhile, it is non-trivial work in practice for software developers to manually find such malicious URLs which are hidden in numerous web source codes stored in web servers. In this paper, we propose a security defense system to discover such suspicious, malicious URLs hidden in web source codes, and present experiment results that show its discovery performance. In particular, based on our experiment results, our proposed system discovered 100% of URLs hidden by Javascript encoding obfuscation within sample web source files.
QR코드는 간단한 명함이나 URL 등 다양한 형태로 사용되어 왔다. 최근 코로나19 팬데믹의 영향으로 방문 및 출입 기록을 통한 이동 경로를 추적하기 위해 QR코드를 사용하게 되면서 QR코드의 사용량이 급증하였다. 이렇듯 대부분의 사람들이 대중적으로 사용하게 되면서 위협에 항상 노출되어 있다. QR코드의 경우 실행을 하기 전까지 어떠한 행위를 하는지 알 수 없다. 그렇기 때문에 악성URL이 삽입된 QR코드를 아무 의심없이 실행을 하게 되면 보안 위협에 바로 노출되게 된다. 따라서 본 논문에서는 QR코드를 스캔할 때 악성 QR코드인지를 판단한 후 이상이 없을 경우에만 정상적인 접속을 할 수 있는 클라우드 기반 악성 QR코드 탐지 시스템을 제안한다.
안드로이드 앱에서 접근할 수 있는 유해 사이트를 프로그램 분석 방법으로 검출하는 방법을 제안한다. 주어진 앱의 바이너리 코드를 자바바이트 코드로 역 컴파일하고 문자열 분석 방법을 적용하여 실행 중 사용 가능한 문자열 집합을 계산한 다음 유해 사이트 URL 문자열이 포함되어 있는지 확인하는 방법이다. 기존에는 앱을 직접 실행해서 특정 URL에 접속하는지 감시하는 동적 모니터링 방법인 반면, 제안한 방법은 앱을 실행할 필요가 없다. 앱스토어 관리에서 주기적으로 유해 앱 여부를 검사하는데 제안한 방법을 활용할 수 있다.
과거 일 평균 10종 내외로 발견되었던 악성코드가 최근 10년 동안 급격히 증가하여 오늘날에는 55,000종 이상의 악성코드가 발견되고 있다. 하지만 발견되는 다수의 악성코드는 새로운 형태의 신종 악성코드가 아니라 과거 악성코드에서 일부 기능이 추가되거나 백신탐지를 피하기 위해 인위적으로 조작된 변종 악성코드가 다수이다. 따라서 신종과 변종이 포함된 다수의 악성코드를 효과적으로 대응하기 위해서는 과거의 악성코드와 유사도를 비교하여 신종과 변종을 분류하는 과정이 필요하게 되었다. 기존의 악성코드를 대상으로 한 유사도 산출 기법은 악성코드가 사용하는 IP, URL, API, 문자열 등의 외형적 특징을 비교하거나 악성코드의 코드단계를 서로 비교하는 방식이 사용되었다. 하지만 악성코드의 유입량이 증가하고 비교대상이 많아지면서 유사도를 확인하기 위해 많은 계산이 필요하게 되자 계산량을 줄이기 위해 최근에는 퍼지해시가 사용되고 있다. 하지만 퍼지해시에 제한사항들이 제시되면서 기존의 퍼지해시를 이용한 유사도 비교방식의 문제점이 제시되고 있다. 이에 본 논문에서는 퍼지해시를 이용하여 유사도 성능을 높일 수 있는 새로운 악성코드간 유사도 비교기법을 제안하고 이를 활용한 악성코드 분류기법을 제시하고자 한다.
웹에 존재하는 악성코드 배포 네트워크에는 악성코드 배포를 위해 핵심 역할을 수행하는 중심 노드가 있다. 이노드를 찾아 차단하면 악성코드 전파를 효과적으로 차단할 수 있다. 본 연구에서는 복잡계 네트워크에서 위험 분석이 적용된 centrality 검색 방법을 제안하였고, 이 방식을 통해 악성코드 배포 네트워크 내에서 핵심노드를 찾는 방법을 소개한다. 그 외에, 정상 네트워크와 악성 네트워트는 in-degree와 out-degree 측면에서 큰 차이가 있고, 네트워크 레이아웃 측면에서도 서로 다르다. 이 특징을 통해 우리는 악성과 정상 네트워크를 분별할 수 있다.
최근 DDoS공격용 좀비, 기업정보 및 개인정보 절취 등 각종 사이버 테러 및 금전적 이윤 획득의 목적으로 웹사이트를 해킹, 악성코드를 은닉함으로써 웹사이트 접속PC를 악성코드에 감염시키는 공격이 지속적으로 증가하고 있으며 은닉기술 및 회피기술 또한 지능화 전문화되고 있는 실정이다. 악성코드가 은닉된 웹사이트를 탐지하기 위한 현존기술은 BlackList 기반 패턴매칭 방식으로 공격자가 악성코드의 문자열 변경 또는 악성코드를 변경할 경우 탐지가 불가능하여 많은 접속자가 악성코드 감염에 노출될 수 밖에 없는 한계점이 존재한다. 본 논문에서는 기존 패턴매칭 방식의 한계점을 극복하기 위한 방안으로 WhiteList 기반의 악성코드 프로세스 행위분석 탐지기술을 제시하였다. 제안방식의 실험 결과 현존기술인 악성코드 스트링을 비교하는 패턴매칭의 MC-Finder는 0.8%, 패턴매칭과 행위분석을 동시에 적용하고 있는 구글은 4.9%, McAfee는 1.5%임에 비해 WhiteList 기반의 악성코드 프로세스 행위분석 기술은 10.8%의 탐지율을 보였으며, 이로써 제안방식이 악성코드 설치를 위해 악용되는 웹 사이트 탐지에 더욱 효과적이라는 것을 증명할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.