• Title/Summary/Keyword: Main Steam

Search Result 431, Processing Time 0.021 seconds

Remaining Life Assessment of High Temperature Steam Piping (고온 증기 파이프의 잔여수명 평가)

  • 윤기봉
    • Journal of Welding and Joining
    • /
    • v.13 no.2
    • /
    • pp.12-24
    • /
    • 1995
  • Recently, more researches have been actively performed for the assessment of material degradation and residual-life of elevated temperature plant components, as some of domestic fossil power plants become older than 30 years. In this paper, results of on_site residual life assessment are reported for main steam pipes of Youngwol power station #2 which have operated since 1965. For critical weld locations such as butt welds branch welds, Y_sections and a T-section, replication technique and hardness measurement technique were employed for life_assessment. When cracks were detected by conventional NDT tests, crack growth life was calculated using a computer code. On the other hand, for matrix of pipes, residual life was quantitatively estimated by an analytic method and material degradation was estimated qualitatively using diameter measurement data and grain-boundary etching method. Also, direction in further improvement of on-site life assessment techniques are proposed.

  • PDF

Fuzzy Based Failure Mode and Effect Analysis (FMEA) of Hydrogen Production Process Using the Thermococcus Onnurineus NA1 (퍼지기반 해양 미생물 이용 수소 제조 공정의 고장유형 및 영향분석)

  • PARK, SUNG HO;AHN, JUNKEON;KIM, SU HYUN;YOO, YOUNG DON;CHANG, DAEJUN;KANG, SUNGKYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.4
    • /
    • pp.307-316
    • /
    • 2018
  • In this study, the failure mode and effect analysis (FMEA) of hydrogen production process by using the Thermococcus onnurineus NA1 was conducted and advanced methodology to compensate the weakness of previous FMEA methodology was applied. To bring out more quantitative and precise FMEA result for bio-hydrogen production process, fuzzy logic and potential loss cost estimated from ASPEN Capital Cost Estimator (ACCE) was introduced. Consequently, risk for releasing the flammable gases via internal leakage of steam tube which to control the operating temperature of main reactor was caution status in FMEA result without applying the fuzzification and ACCE. Moreover, probability of the steam tube plugging caused by solid property like medium was still caution status. As to apply the fuzzy logic and potential loss cost estimated from ACCE, a couple of caution status was unexpectedly upgraded to high dangerous status since the potential loss cost of steam tube for main reactor and decrease in product gases are higher than expected.

Acoustic Valve Leak Diagnosis and Monitoring System for Power Plant Valves (발전용 밸브누설 음향 진단 및 감시시스템)

  • Lee, Sang-Guk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.425-430
    • /
    • 2008
  • To verify the system performance of portable AE leak diagnosis system which can measure with moving conditions, AE activities such as RMS voltage level, AE signal trend, leak rate degree according to AE database, FFT spectrum were measured during operation on total 11 valves of the secondary system in nuclear power plant. AE activities were recorded and analyzed from various operating conditions including different temperature, type of valve, pressure difference, valve size and fluid. The results of this field study are utilized to select the type of sensors, the frequency band for filtering and thereby to improve the signal-to-noise ratio for diagnosis for diagnosis or monitoring of valves in operation. As the final result of application study above, portable type leak diagnosis system by AE was developed. The outcome of the study can be definitely applied as a means of the diagnosis or monitoring system for energy saving and prevention of accident for power plant valve. The purpose of this study is to verify availability of the acoustic emission in-situ monitoring method to the internal leak and operating conditions of the major valves at nuclear power plants. In this study, acoustic emission tests are performed when the pressurized temperature water and steam flowed through glove valve(main steam dump valve) and check valve(main steam outlet pump check valve) on the normal size of 12 and 18 ". The valve internal leak monitoring system for practical field was designed. The acoustic emission method was applied to the valves at the site, and the background noise was measured for the abnormal plant condition. To improve the reliability, a judgment of leak on the system was used various factors which are AE parameters, trend analysis, frequency analysis, voltage analysis and amplitude analysis of acoustic signal emitted from the valve operating condition internal leak.

  • PDF

Design and Performance Analysis of Steam Turbine for Variations of Degree of Reaction (반동도에 따른 증기터빈의 설계 및 성능해석)

  • Shin, Jung-Ha;Lee, Geun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1391-1398
    • /
    • 2011
  • Design and performance analysis of a steam turbine for variations of degree of reaction were performed by computer simulation. Design parameters such as blade angles, exit areas, and heights of the nozzle and moving blade were represented as functions of the degree of reaction. The main performance factors such as turbine power, diagram efficiency, and axial thrust were also expressed in terms of the degree of reaction. For further information about the design and performance, the blade angles and main performance factors were investigated as functions of the flow coefficient. The turbine power and diagram efficiency reached a maximum value for a given degree of reaction and flow coefficient, and the symmetric shape of the moving blade showed distortion as the degree of reaction was increased.

Study on Safety Design of Vertical-Type Heat Recovery Steam Generator Based on Large-Scale Analysis (대규모해석을 활용한 수직형 배열회수 증기발생기의 안전설계에 관한 연구)

  • Ryu, Tae-Young;Yang, Sang-Mo;Jang, Hyun-Min;Choi, Jae-Boong;Myung, Ki-Chul;Lee, Dong-Yun;Choi, Shin-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1535-1542
    • /
    • 2012
  • A Heat Recovery Steam Generator(HRSG) is the main component of a Combined Cycle Power Plant(CCPP). It is a very large structure that is made from relatively thin metal sheets. Therefore, the structural integrity of an HRSG is very important to ensure safe operation during plant lifetime. In particular, thermal deformation and thermal fatigue have been revealed as the main causes of the mechanical degradation of an HRSG. In order to prevent unexpected damage, safety evaluation based on a large-scale analysis is necessary. Therefore, this study aims to improve the safety of HRSG by using Finite Element Analysis(FEA) results derived from large-scale analysis. Furthermore, the modified design is verified by comparing it with the original one. This result will be used as basic data for improving the safety of a vertical-type HRSG.

Flow-Accelerated Corrosion Analysis for Heat Recovery Steam Generator in District Heating System (지역난방 배열 회수 보일러의 유동 가속 부식 원인 고찰)

  • Hong, Minki;Chae, Hobyung;Kim, Youngsu;Song, Min Ji;Cho, Jeongmin;Kim, Woo Cheol;Ha, Tae Baek;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.29 no.1
    • /
    • pp.11-15
    • /
    • 2019
  • Severe wall thinning is found on the tube of a low-pressure evaporator(LPEVA) module that is used for a heat recovery steam generator(HRSG) of a district heating system. Since wall thinning can lead to sudden failure or accidents that lead to shutdown of the operation, it is very important to investigate the main mechanism of the wall thinning. In this study, corrosion analysis associated with a typical flow-accelerated corrosion(FAC) is performed using the corroded tube connected to an upper header of the LPEVA. To investigate factors triggering the FAC, the morphology, composition, and phase of the corroded product of the tube are examined using optical microscopy, scanning electron microscopy combined with energy dispersive spectroscopy, and x-ray diffraction. The results show that the thinnest part of the tube is in the region where gas directly contacts, revealing the typical orange peel type of morphology frequently found in the FAC. The discovery of oxide scales containing phosphate indicates that phosphate corrosion is the main mechanism that weakens the stability of the protective magnetite film and the FAC accelerates the corrosion by generating the orange peel type of morphology.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Power and Efficiency Optimization through Exergy Analysis of Power Plant (발전 플랜트의 엑서지 해석으로부터 발전량 및 발전효율 최적화)

  • Kim, Deok-Jin;Lee, Jae-Byoung;Kang, Su-Hwan
    • Plant Journal
    • /
    • v.9 no.3
    • /
    • pp.43-47
    • /
    • 2013
  • Even if an expert who has majored energy engineering, it is a difficult concept to understand power output optimization and power efficiency optimization. In this study a diagram applying thermodynamic state value as specific exergy and exergy ratio was developed. Although general peoples who did not major energy engineering can be easily understand the concept of power output optimization and power efficiency through the developed diagram. A represented property that can identify the performance of power plant is the main steam temperature and pressure. At the developed diagram the maximum power output line and maximum power efficiency line are shown according to the temperature and pressure of main steam. Therefore we can identify how much a power plant approach to maximum power output and maximum power efficiency.

  • PDF

Design optimization of a nuclear main steam safety valve based on an E-AHF ensemble surrogate model

  • Chaoyong Zong;Maolin Shi;Qingye Li;Fuwen Liu;Weihao Zhou;Xueguan Song
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4181-4194
    • /
    • 2022
  • Main steam safety valves are commonly used in nuclear power plants to provide final protections from overpressure events. Blowdown and dynamic stability are two critical characteristics of safety valves. However, due to the parameter sensitivity and multi-parameter features of safety valves, using traditional method to design and/or optimize them is generally difficult and/or inefficient. To overcome these problems, a surrogate model-based valve design optimization is carried out in this study, of particular interest are methods of valve surrogate modeling, valve parameters global sensitivity analysis and valve performance optimization. To construct the surrogate model, Design of Experiments (DoE) and Computational Fluid Dynamics (CFD) simulations of the safety valve were performed successively, thereby an ensemble surrogate model (E-AHF) was built for valve blowdown and stability predictions. With the developed E-AHF model, global sensitivity analysis (GSA) on the valve parameters was performed, thereby five primary parameters that affect valve performance were identified. Finally, the k-sigma method is used to conduct the robust optimization on the valve. After optimization, the valve remains stable, the minimum blowdown of the safety valve is reduced greatly from 13.30% to 2.70%, and the corresponding variance is reduced from 1.04 to 0.65 as well, confirming the feasibility and effectiveness of the optimization method proposed in this paper.

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications (바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용)

  • Song, Hyoungwoon;Jung, Hee Suk;Uhm, Sunghyun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.