DOI QR코드

DOI QR Code

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R. (Paul Scherrer Institute (PSI)) ;
  • Paranjape, S. (OST, Ostschweizer Fachhochschule Departement Technik) ;
  • Fehlmann, M. (Paul Scherrer Institute (PSI)) ;
  • Suter, S. (Paul Scherrer Institute (PSI)) ;
  • Doll, U. (Paul Scherrer Institute (PSI)) ;
  • Paladino, D. (Paul Scherrer Institute (PSI))
  • Received : 2021.09.28
  • Accepted : 2021.12.25
  • Published : 2022.06.25

Abstract

The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

Keywords

Acknowledgement

The generous support from the PRG and MB of the HYMERES-2 project is gratefully acknowledged. Michele Andreani (PSI) has provided the concept and the preliminary scoping calculations for these experiments with the GOTHIC code. The discussion with Ethan Kirkby (PSI - University of Calgary) has provided valuable aspects to sharpen the arguments. The authors dedicate this article to the memory of Max Fehlmann. Our co-author unexpectedly died the last day of November 2021. Without his precision, his curiosity and engagement while keeping his feet on the ground, this and a wealth of other PANDA experiments would not have been successfully come true during the last 20 years [4,9,15,17,30,34-36]. These experiments required the adaption and the transformation into the physical world of what the scientists eventually want. And Max handled these challenges always in a successful manner. We will miss him as a friend and competent colleague.

References

  1. R. Gharari, H. Kazeminejad, N. Mataji Kojouri, A. Hedayat, A review on hydrogen generation, explosion, and mitigation during severe accidents in light water nuclear reactors, Int. J. Hydrogen Energy 43 (4) (2018) 1939-1965. https://doi.org/10.1016/j.ijhydene.2017.11.174
  2. B.R. Seghal, Nuclear Safety in Light Water Reactors, Severe Accident Phenomenology, Academic Press, 2012.
  3. N. Fujisawa, S. Liu, T. Yamagata, Numerical study on ignition and failure mechanisms of hydrogen explosion accident in Fukushima Daiichi Unit 1, Eng. Fail. Anal. 124 (2021) 105388. https://doi.org/10.1016/j.engfailanal.2021.105388
  4. M. Andreani, A.J. Gaikwad, S. Ganju, B. Gera, S. Grigoryev, L.E. Herranz, R. Huhtanen, V. Kale, A. Kanaev, R. Kapulla, S. Kelm, J. Kim, T. Nishimura, D. Paladino, S. Paranjape, B. Schramm, M. Sharabi, F. Shen, R. Zhang, Synthesis of a CFD benchmark exercise based on a test in the PANDA facility addressing the stratification erosion by a vertical jet in presence of a flow obstruction, Nucl. Eng. Des. 354 (2019) 110177. https://doi.org/10.1016/j.nucengdes.2019.110177
  5. N. Aksan, An overview on thermal-hydraulic phenomena for water cooled nuclear reactors; part I: SETs, and ITFs of PWRs, BWRs, VVERs, Nuclear Engineering and Design 354 (2019) 110212. https://doi.org/10.1016/j.nucengdes.2019.110212
  6. N. Aksan, An overview on thermal-hydraulic phenomena for water cooled nuclear reactors; part II: ALWRs and SCWRs, Nucl. Eng. Des. 354 (2019) 110214. https://doi.org/10.1016/j.nucengdes.2019.110214
  7. D. Wang, L. Tong, X. Cao, Numerical study on the influence of steam condensation on hydrogen distribution in local compartments, Ann. Nucl. Energy 121 (2018) 468-478. https://doi.org/10.1016/j.anucene.2018.07.044
  8. D. Bestion, A state-of-the-art report on scaling in system thermal-hydraulics applications to nuclear reactor safety and design, in: Tech. Rep. R, vol. 14, NEA/CSNI, 2016. Mar. 2017).
  9. R. Kapulla, G. Mignot, S. Paranjape, L. Ryan, D. Paladino, Large Scale Gas Stratification Erosion by a Vertical Helium-Air Jet, Science and Technology of Nuclear Installations, 2014.
  10. S. Suman, M.K. Khan, M. Pathak, R. Singh, J. Chakravartty, Rupture behaviour of nuclear fuel cladding during loss-of-coolant accident, Nucl. Eng. Des. 307 (2016) 319-327. https://doi.org/10.1016/j.nucengdes.2016.07.022
  11. S. Kelm, R. Kapulla, H.-J. Allelein, Erosion of a confined stratified layer by a vertical jet. detailed assessment of a CFD approach against the OECD/NEA PSI benchmark, Nucl. Eng. Des. 312 (2017) 228-238. https://doi.org/10.1016/j.nucengdes.2016.09.014
  12. M. Andreani, D. Paladino, T. George, On the unexpectedly large effect of the re-evaporation of the condensate liquid film in two tests in the PANDA facility revealed by simulations with the Gothic code, XCFD4NRS, Grenoble, France 10-12 September (2008).
  13. T. Haste, P. Giordano, L. Herranz, N. Girault, R. Dubourg, J.-C. Sabroux, L. Cantrel, D. Bottomley, F. Parozzi, A. Auvinen, S. Dickinson, J.-C. Lamy, G. Weber, T. Albiol, SARNET integrated European Severe Accident Research - conclusions in the source term area, Nucl. Eng. Des. 239 (12) (2009) 3116-3131. https://doi.org/10.1016/j.nucengdes.2009.09.033
  14. L. Wang, B. Yan, The scaling technology in nuclear reactor thermal hydraulic, Ann. Nucl. Energy 161 (2021) 108440. https://doi.org/10.1016/j.anucene.2021.108440
  15. D. Paladino, M. Andreani, S. Guentay, G. Mignot, R. Kapulla, S. Paranjape, M. Sharabi, A. Kisselev, T. Yudina, A. Filippov, M. Kamnev, A. Khizbullin, O. Tyurikov, Z. Liang, D. Abdo, J. Brinster, D. Dabbene, S. Kelm, M. Klauck, L. Goetz, R. Gehr, J. Malet, A. Bentaib, A. Bleye, P. Lemaitre, E. Porcheron, S. Benz, T. Jordan, Z. Xu, C. Boyd, A. Siccama, D. Visser, Outcomes from the EURATOM-ROSATOM ERCOSAM SAMARA projects on containment thermal-hydraulics for severe accident management, Nucl. Eng. Des. 308 (2016) 103-114. https://doi.org/10.1016/j.nucengdes.2016.08.011
  16. ERCOSAM, Containment Thermal-Hydraulics of Current and Future LWRs for Severe Accident Management, Funded under: FP7-EURATOM-FISSION (2014) Grant agreement ID: 249691.
  17. M. Andreani, A. Badillo, R. Kapulla, Synthesis of the OECD/NEA-PSI CFD benchmark exercise, Nucl. Eng. Des. 299 (2016) 59-80, cFD4NRS-5. https://doi.org/10.1016/j.nucengdes.2015.12.029
  18. D. Visser, N. Siccama, S. Jayaraju, E. Komen, Application of a CFD based containment model to different large-scale hydrogen distribution experiments, Nucl. Eng. Des. 278 (2014) 491-502. https://doi.org/10.1016/j.nucengdes.2014.08.005
  19. A. Filippov, S. Grigoryev, N. Drobyshevsky, A. Kiselev, A. Shyukin, T. Yudina, CMFD simulation of ERCOSAM PANDA spray tests PE1 and PE2, Nucl. Eng. Des. 299 (2016) 81-94, cFD4NRS-5. https://doi.org/10.1016/j.nucengdes.2015.10.013
  20. S. Paranjape, G. Mignot, R. Kapulla, D. Paladino, Experimental investigation of gas transport induced by containment spray activation during a scaled severe accident scenario, Nucl. Eng. Des. 342 (2019) 88-98. https://doi.org/10.1016/j.nucengdes.2018.11.017
  21. F. Dabbene, J. Brinster, D. Abdo, E. Porcheron, P. Lemaitre, G. Mignot, R. Kapulla, S. Paranjape, M. Kamnev, A. Khizbullin, Experimental activities on stratification and mixing of a gas mixture under the conditions of a severe accident with intervention of mitigating measures performed in the ERCOSAM-SAMARA project, in: ICAPP 2015 - InternationalCongress on Advances in Nuclear Power Plants, May 2015, Nice, France, 2015 paper 15148, ceae02509081.
  22. T. Yudina, A. Filippov, A. Kiselev, A. Bleyer, A. Bentaib, J. Malet, M. Andreani, D. Paladino, S. Guentay, R. Gehr, S. Kelm, H.-J. Allelein, S. Benz, T. Jordan, Z. Liang, T. Popova, HYMIX Benchmarking Tests: CODE-TO-CODE Comparison, ICAPP 2015 - InternationalCongress on Advances in Nuclear Power Plants, May 2015, Nice, France, 2015, p. 15363.
  23. A.S. Filippov, S.Y. Grigoryev, O. Tarasov, On the possible role of thermal radiation in containment thermal experiments by the example of CFD analyses of TOSQAN T114 Air-He test, Nucl. Eng. Des. 310 (2016) 175-186. https://doi.org/10.1016/j.nucengdes.2016.10.003
  24. A. Silde, H. R, I. Karppinen, Simulation of the Cooler Experiment Using the APROS Containment Code and FLUENT, 2nd HYMERES-2 meeting, 2017.
  25. J. Baccou, J. Zhang, P. Fillion, G. Damblin, A. Petruzzi, R. Mendizabal, F. Reventos, T. Skorek, M. Couplet, B. Iooss, D.-Y. Oh, T. Takeda, Development of good practice guidance for quantification of thermal-hydraulic code model input uncertainty, Nucl. Eng. Des. 354 (2019) 110173. https://doi.org/10.1016/j.nucengdes.2019.110173
  26. S. Paranjape, R. Kapulla, M. Fehlmann, S. Suter, W. Bissels, D. Paladino, OECD-NEA/HYMERES-2 project: PANDA test facility description and geometrical specifications, in: Tech. Rep. TM-41-18-02, Rev-0, HYMERES-2-18-02, Paul Scherrer Institut, 5232 Villigen-PSI, Switzerland, Feb. 2018.
  27. S. Kelm, H.-J.H. Muller, Allelein, Importance of Thermal Radiation Heat Transfermodeling in Containment Typical Flows, Proc. CFD4NRS-6, Boston, Massachusetts, USA, 2016. September 13-15.
  28. Y. Li, H. Zhang, J. Xiao, J. Travis, T. Jordan, Numerical investigation of natural convection inside the containment with recovering passive containment cooling system using gasflow-mpi, Ann. Nucl. Energy 114 (2018) 1-10. https://doi.org/10.1016/j.anucene.2017.11.047
  29. A. Dehbi, S. Kelm, J. Kalilainen, H. Mueller, The influence of thermal radiation on the free convection inside enclosures, Nucl. Eng. Des. 341 (2019) 176-185. https://doi.org/10.1016/j.nucengdes.2018.10.025
  30. S. Kelm, R. Kapulla, H.-J. Allelein, Erosion of a confined stratified layer by a vertical jet - detailed assessment of a CFD approach against the OECD/NEA PSI benchmark, Nucl. Eng. Des. 312 (2017) 228-238, 16th International Topical Meeting on Nuclear Reactor Thermal Hydraulics. https://doi.org/10.1016/j.nucengdes.2016.09.014
  31. B. Schramm, J. Stewering, M. Sonnenkalb, Einsatz von CFD-Codes fur die Simulation von unfalltypischen Phanomenen im Sicherheitseinschluss: Validierung und gezielte Modellerweiterung, GRS (2017- GRS-472) Anschlussbericht RS1526, ISBN 978-3-946607-55-7.
  32. R. Huhtanen, Private Communication, 2018.
  33. X. Liu, S. Kelm, M. Kampili, H.-J. Allelein, R. Kapulla, D. Paladino, S. Paranjape, Validation of a finite volume Monte Carlo solver for non-gray gas radiation in containemnt flows, 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), to be published.
  34. R. Kapulla, K. Manohar, S. Paranjape, D. Paladino, Self-similarity for statistical properties in low-order representations of a large-scale turbulent round jet based on the proper orthogonal decomposition, Exp. Therm. Fluid Sci. (2021) 110320.
  35. I. Gallego-Marcos, P. Kudinov, W. Villanueva, R. Kapulla, S. Paranjape, D. Paladino, J. Laine, M. Puustinen, A. Raesaenen, L. Pyy, E. Kotro, Pool stratification and mixing induced by steam injection through spargers: CFD modelling of the PPOOLEX and PANDA experiments, Nucl. Eng. Des. 347 (2019) 67-85. https://doi.org/10.1016/j.nucengdes.2019.03.011
  36. S. Paranjape, R. Kapulla, G. Mignot, D. Paladino, Parametric study on density stratification erosion caused by a horizontal steam jet interacting with a vertical plate obstruction, Nucl. Eng. Des. 312 (2017) 351-360. https://doi.org/10.1016/j.nucengdes.2016.12.012