DOI QR코드

DOI QR Code

Recent Progress for Hydrogen Production from Biogas and Its Effective Applications

바이오가스 유래 수소 제조 기술 동향 및 효과적인 적용

  • Song, Hyoungwoon (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Jung, Hee Suk (Plant Process Development Center, Institute for Advanced Engineering) ;
  • Uhm, Sunghyun (Plant Process Development Center, Institute for Advanced Engineering)
  • 송형운 (고등기술연구원 플랜트공정개발센터) ;
  • 정희숙 (고등기술연구원 플랜트공정개발센터) ;
  • 엄성현 (고등기술연구원 플랜트공정개발센터)
  • Received : 2020.01.06
  • Accepted : 2020.01.29
  • Published : 2020.02.10

Abstract

Hydrogen production from biogas has received consistent attention due to the great potential to solve simultaneously the issues of energy demands and environmental problems. Practically, biomethane produced by purification/upgrading of biogas can be a good alternative to the natural gas which is a main reactant for a steam methane reforming process. Judging from the economic and environmental impacts, however, the steam biogas and dry reforming are considered to be more effective routes for hydrogen production because both processes do not require the carbon dioxide elimination step. Herein, we highlight recent studies of hydrogen production via reforming processes using biogas and effective applications for earlier commercialization.

바이오가스를 이용한 수소 제조는 주요한 에너지 및 환경 관련 이슈들을 동시에 해결할 수 있다는 장점으로 꾸준히 주목받아 왔다. 바이오가스 정제를 통해 얻은 바이오메탄 수증기개질은 천연가스 개질을 대체할 수 있는 좋은 현실적인 대안이다. 하지만, 경제성과 환경 유해성을 모두 고려한다면 바이오가스를 직접 개질반응에 활용하는 바이오가스 수증기 개질 및 건식 개질을 활용한 수소 제조가 보다 효과적이라 평가된다. 본 논문에서는 바이오가스 기반 추출수소 제조 관련 최근의 기술 이슈 및 개발 동향을 소개하며 향후 상업화를 위한 효과적인 적용 방향에 대해서 고찰하고자 한다.

Keywords

References

  1. C. Figueres, C. Le Quere, A. Mahindra, O. Bate, G. Whiteman, G. Peters, and D. Guan, Emissions are still rising: Ramp up the cuts, Nature, 564, 27-30 (2018). https://doi.org/10.1038/d41586-018-07585-6
  2. C. Le Quere, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Hauck, J. Pongratz, P. Pickers, J. I. Korsbakken, G. P. Peters, and J. G. Canadell, Global carbon budget 2018, Earth Syst. Sci. Data, 10, 2141-2194 (2018). https://doi.org/10.5194/essd-10-2141-2018
  3. G. D. Marcoberardino, D. Vitali, F. Spinelli, M. Binotti, and G. Manzolini, Green hydrogen production from raw biogas: A techno-economic investigation of conventional processes using pressure swing adsorption unit, Processes, 6, 19 (2018). https://doi.org/10.3390/pr6030019
  4. V. Sumbramani, A. Basile, and N. T. Verizoglu, Compendium of Hydrogen Energy: Hydrgoen Production and Purification, Elsevier Science & Technology: Amsterdam, The Netherlands (2015).
  5. A. I. Adnan, M. Y. Ong, S. Nomanbhay, K. W. Chew, and P. L. Show, Technologies for biogas upgrading to biomethane: A Review, Bioengineering, 6, 92 (2019). https://doi.org/10.3390/bioengineering6040092
  6. I. U. Khan, M. H. D. Othman, H. Hashim H, T. Matsuura, A. F. Ismail, M. R. D. Arzhandi, and I. W. Azelee, Biogas as a renewable energy fuel-a review of biogas upgrading, utilization and storage, Energy Convers. Manage., 150, 277-294 (2017). https://doi.org/10.1016/j.enconman.2017.08.035
  7. Q. Sun, H. Li, J. Yan, L. Liu, Z. Yu, and X. Yu, Selection of appropriate biogas upgrading technology-a review of biogas cleaning, upgrading and utilisation, Renew. Sustain. Energy Rev., 51, 521-532 (2015). https://doi.org/10.1016/j.rser.2015.06.029
  8. Y. Gao, J. Jiang, Y. Meng, F. Yan, and A. Aihemaiti, A review of recent developments in hydrogen production via biogas dry reforming, Energy Convers. Manage., 171, 133-155 (2018). https://doi.org/10.1016/j.enconman.2018.05.083
  9. L. B. Braga, J. L. Silveira, M. E. Silva, C. E. Tuna, E. B. Machin, and D. T. Pedroso, Hydrogen production by biogas steam reforming: A technical, economic and ecological analysis, Renew. Sustain. Energy Rev., 28, 166-173 (2013). https://doi.org/10.1016/j.rser.2013.07.060
  10. S. Arora and R. Prasad, An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts, RSC Adv., 6, 108668-108688 (2016). https://doi.org/10.1039/C6RA20450C
  11. P. S. Roy, J. Song, K. Kim, C. S. Park, and A. S. K. Raju, $CO_2$ conversion to syngas through the steam-biogas reforming process, J. $CO_2$ Util., 25, 275-282 (2018).
  12. D. P. Minh, T. J. Siang, D-V. N. Vo, T. S. Phan, C. Ridart, A. Nziho, and D. Grouset, Hydrogen production from biogas reforming: An overview of steam reforming, dry reforming, dual reforming, and tri-reforming of methane, Hydrogen Supply Chains, Chapter 4, 111-166 (2018).
  13. S. Wang, G. Q. Lu, and G. J. Millar, Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts: State of the art, Energy Fuels, 10, 896-904 (1996). https://doi.org/10.1021/ef950227t
  14. O. W. Awe, Y. Zhao, A. Nzihou, D. P. Minh, and N. Lyczko, A review of biogas utilisation, purification and upgrading technologies, Waste Biomass Valori., 8, 267-283 (2017). https://doi.org/10.1007/s12649-016-9826-4
  15. G. Saur and A. Milbrandt, Renewable hydrogen potential from biogas in the United States, NREL, TP-5400-60283 (2014).
  16. R. Hakawati, B. M. Smyth, G. McCullough, F. D. Rosa, and D. Rooney, What is the most energy efficient route for biogas utilization: Heat, electricity or transport?, Appl. Energy, 206, 1076-1087 (2017). https://doi.org/10.1016/j.apenergy.2017.08.068
  17. M. Usman, W. M. A. W. Daud, and H. F. Abbas, Dry reforming of methane: Influence of process parameters - A review, Renew. Sust. Energy Rev., 45, 710-744 (2015). https://doi.org/10.1016/j.rser.2015.02.026
  18. M. Seo, S. Y. Kim, Y. D. Kim, E. D. Park, and S. Uhm, Highly stable barium zirconate supported nickel oxide catalyst for dry reforming of methane: From powders toward shaped catalysts, Int. J. Hydrog. Energy, 43, 11355-11362 (2018). https://doi.org/10.1016/j.ijhydene.2018.03.181
  19. J. Yun, K. Cho, Y. D. Lee, and S. Yu, Four different configurations of a 5 kW class shell-and-tube methane steam reformer with a low-temperature heat source, Int. J. Hydrog. Energy, 43, 4546-4562 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.069
  20. A. Settar, S. Abboudi, B. Madani, and R. Nebbali, Estimation of transient heat flux density during the heat supply of a catalytic wall steam methane reformer, Heat Mass Transf., 54, 385-391 (2018). https://doi.org/10.1007/s00231-017-2131-3