DOI QR코드

DOI QR Code

Removal of Cadmium and Manganese Ions Utilizing Astragalus uliginosus L.-Stem Biochar

황기 줄기 바이오차를 활용한 카드뮴과 망간 이온의 제거

  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Kim, Seung-Soo (*Department of Chemical Engineering, Kangwon National University)
  • 최석순 (명대학교 바이오환경공학과) ;
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 김승수 (강원대학교 삼척캠퍼스 화학공학과)
  • Received : 2019.10.24
  • Accepted : 2019.11.07
  • Published : 2020.02.10

Abstract

Astragalus uliginosus L.-stems as a by-product of oriental medicine are produced largely in a northern area of Chungbuk province. These by-products do not have any demand and thus usually discarded into the fields as a waste. In this work, a biochar was prepared from the Astragalus uliginosus L.-stem waste for recycling. The biochar was used to investigate the removal characteristics of cadmium and manganese ions dissolved in water. When adsorption equilibrium experiments were performed to treat 50 and 100 mg/L of cadmium ions, the removal efficiencies of cadmium were 100 and 95%, respectively. In addition, the maximum of adsorption amount for manganese ions in 5 h at an initial concentration of 50 and 100 mg/L was found to be as 36.1 and 37.9 mg/g, respectively. Based on the experimental results, it was found that the adsorption amount of Astragalus uliginosus L.-stem biochar for the removal of both cadmium and manganese ions was four times higher than that of the activated carbon. The surface analysis of both biochar and activated carbon samples using X-ray photoelectron spectroscopy (XPS) analysis showed that the oxygen content and O/C ratio of biochar was 2.1 and 2.4 times higher than that of the activated carbon, respectively. In order to enhance the removal capability of manganese, 50 and 100 mg/L of manganese ions were operated at different temperatures. It was observed that these equilibrium was attained in 4 h under 45 ℃ and removal efficiencies were 92 and 53%, respectively. Consequently, the experimental results can be utilized as a new removal technology for eco-friendly and economically treating cadmium and manganese ions dissolved in water.

충북의 북부지역에서 한약재 부산물로서 황기 줄기가 대량 생산되고 있으나, 이러한 부산물들은 특별한 수요처가 없이 밭에 폐기물로 버려지고 있다. 본 연구에서는 이 폐기물을 재활용하고자, 황기 줄기를 사용하여 바이오차를 제조하였다. 이 바이오차를 사용하여 물속에 용해된 카드뮴과 망간 이온의 제거특성을 고찰하였다. 50과 100 mg/L 카드뮴 이온을 처리하기 위하여 흡착 평형 실험이 이루어졌을 때, 카드뮴의 제거효율은 각각 100과 95%를 나타내었다. 또한, 50과 100 mg/L 망간 이온을 제거하기 위하여 5 h의 반응이 이루어졌을 때, 각각 36.1과 37.9 mg/g 최대 흡착량을 얻을 수 있었다. 위의 실험 결과, 카드뮴과 망간 이온의 제거공정에서 황기 줄기 바이오차는 활성탄보다 4배 이상의 흡착량을 나타내었다. 그리고 황기 줄기 바이오차와 활성탄 표면의 화학 구조를 관찰하기 위하여 X-ray photoelectron spectroscopy (XPS)를 분석한 결과, 황기 줄기 바이오차는 활성탄과 비교하여 산소 함량과 O/C의 비율이 각각 2.1과 2.4배 증가함을 알 수 있었다. 또한, 망간 이온의 제거능력을 향상시키기 위하여 온도 변화에 의한 운전이 이루어졌으며, 45 ℃로 4 h에서 흡착 평형에 도달하였으며 50과 100 mg/L 망간 이온은 각각 92, 53%의 제거효율을 나타내었다. 결과적으로 이러한 실험 결과들은 물속에 용해된 카드뮴과 망간 이온을 친환경적이며 경제적으로 처리하는 새로운 제거 기술에 유용하게 사용될 수 있을 것이다.

Keywords

References

  1. K.-H. Kim, N.-H. Lee, I.-K. Paik, J.-H. Park, and J.-K. Yang, Characteristics of heavy metal removal from aqueous solution using leather industry by-products, J. Kor. Soc. Environ. Eng., 32(5), 417-426 (2010).
  2. J.-H. Park, J. J. Wang, S.-H. Kim, S.-W. Kang, C. Y. Jeong, J.-R. Jeon, K. H. Park, J.-S. Cho, R. D. Delaune, D.-C. Seo, Cadmium adsorption characteristics of biochars derived using various pine tree residues and pyrolysis temperatures, J. Colloid and Interface Sci., 553, 298-307 (2019). https://doi.org/10.1016/j.jcis.2019.06.032
  3. U. Kumar and M. Bandyopadhyay, Sorption of cadmium from aqueous solution using pretreated ricw husk, Bioresour. Tech., 97, 104-109 (2006). https://doi.org/10.1016/j.biortech.2005.02.027
  4. Y.-H. Li, S. Wang, Z. Luan, J. Ding, C. Xu, and D. Wu, Adsorption of cadmium(II) from aqueous solution, Carbon, 41, 1057-1062 (2003). https://doi.org/10.1016/S0008-6223(02)00440-2
  5. F. Fu and Q. Wang, Removal of heavy metal ions from wastewater: A review, J. Environ. Manage., 92, 407-418 (2011). https://doi.org/10.1016/j.jenvman.2010.11.011
  6. N. Esfandiar, B. Nasernejad, and T. Ebai, Removal of Mn(II) from ground water by sugarcane bagasse and activated carbon (a comparative study): Application of response surface methodlogy (RSM), J. Ind. Eng. Chem., 20, 3726-3736 (2014). https://doi.org/10.1016/j.jiec.2013.12.072
  7. S. Kouzbour, N. E. Azher, B. Gourich, F. Gros, and C. Vial, and Y. Stiriba, Removal of manganese(II) from drinking water by aeration process using airlift reactor, J. Water Process Eng., 16, 233-239 (2017). https://doi.org/10.1016/j.jwpe.2017.01.010
  8. J. M. Cerrato, L. P. Reyes, C. N. Alvarado, and A. M. Dietrich, Effect of PVC and iron materials on Mn(II) deposition in drinking water distribution systems, Water Res., 40, 2720-2726 (2006). https://doi.org/10.1016/j.watres.2006.04.035
  9. I. Douterelo, R. L. Sharpe, and J. B. Boxall, Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system, Water Res., 47, 503-516 (2013). https://doi.org/10.1016/j.watres.2012.09.053
  10. T. L. Gerke, B. J. Little, and J. B. Maynard, Manganese deposition in drinking water distribution systems, Sci. Total Environ., 541, 184-193 (2016) https://doi.org/10.1016/j.scitotenv.2015.09.054
  11. D. S. Patil, S. M. Chavan, J. U. K.. Oubagaranadin, A review of tecnologies for manganese removal from wastewaters, J. Environ. Chem. Eng., 4, 468-487 (2016). https://doi.org/10.1016/j.jece.2015.11.028
  12. S. M. Bamforth, D. A. C. Manning, I. Singleton, P. L. Younger, and K. L. Johnson, Manganese removal from mie waters-investigating the occurrence and importance of manganese carbonates, Appl. Geochem., 21, 1274-1287 (2006). https://doi.org/10.1016/j.apgeochem.2006.06.004
  13. V. K. Gupta, C.K. Jain, I. Ali, M. Sharma, and V. K. Saini, Removal of cadmium and nickel from wastewater using bagasse fly ash-a sugar industry waste, Water Res., 37, 4038-4044 (2003). https://doi.org/10.1016/S0043-1354(03)00292-6
  14. X. Xiao, S. Luo, G. Zeng, W. Wei, Y. Wan, L. Chen, H. Guo, Z. Cao, L. Yang, J. Chen, and Q. Xi, Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L., Bioresour. Technol., 101, 1668-1674 (2010). https://doi.org/10.1016/j.biortech.2009.09.083
  15. H.-S. Shin, C.-H. Lee, Y.-S. Lee, and K.-H. Kang, Removal of Heavy Metal from aqueous solution by a column packed with peat-humin, J. Kor. Soc. Environ. Eng., 27(5), 535-541 (2005).
  16. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbent for heavy metals, Water Res., 33(11), 2469-2479 (1999). https://doi.org/10.1016/S0043-1354(98)00475-8
  17. F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 52, 407-418 (2011).
  18. A. Bhatnagar and A. K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf. B: Biointerfaces, 76, 544-548 (2010). https://doi.org/10.1016/j.colsurfb.2009.12.016
  19. S. S. Choi, Biosorption of copper ions by cycling of Castanea crenata, Appl. Chem. Eng., 25(3), 307-311 (2014). https://doi.org/10.14478/ace.2014.1035
  20. M. Ahmad, A. U. Rajapaksha, J. E. Lim, M. Zhang, N. Bolan, D. Mohan, M. Vithanage, S. S. Lee, Y. S. Ok, Biochar as a sorbent for contaminant management in soil and water: A review, Chemosphere, 99, 19-23 (2014). https://doi.org/10.1016/j.chemosphere.2013.10.071
  21. J. H. Park, Y. S. Oak, S. H. kim, S. W. Kang, J. S. Cho, J. Heo, R. D. Delaune, and D. C. Seo, Characteristics of biochars derived from fruit tree pruning wastes and their effects on lead adsorption, Appl. Biol. Chem., 58, 751-760 (2015). https://doi.org/10.1007/s13765-015-0103-1
  22. D. kolodynska, J. krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chem. Eng. J., 307, 353-363 (2017). https://doi.org/10.1016/j.cej.2016.08.088
  23. X. Xu, X. Cao, and L. Zhao, Comparison of rice husk and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: Role of mineral components in biochars, Chemosphere, 92, 955-961 (2013). https://doi.org/10.1016/j.chemosphere.2013.03.009
  24. H. Lu, W. Zhang, Y. Yang, X. Huang, S. Wang, and R. Qiu, Relative distribution of $Pb^{2+}$ sorption mechanism by sludge-derived biochar, Water Res., 46, 854-862 (2012). https://doi.org/10.1016/j.watres.2011.11.058
  25. L. Qian and B. Chen, Dual role of biochars as adsorbents for aluminum: The effects of oxygen-containing organic components and the scattering of silicate particles, Environ. Sci. Technol., 47, 8759-8768 (2013). https://doi.org/10.1021/es401756h
  26. D. Mohan, A. Sarswat, Y. S. Ok, and C. U. J. Pittman, Organic and inorganic contaminants from water with biochar, a renewable, low cost and sustainable adsorbent - A critical review, Bioresour. Technol., 160, 191-202 (2014). https://doi.org/10.1016/j.biortech.2014.01.120
  27. J.-H. Park, Y. S. Ok, S.-H. Kim, J.-S. Heo, R. D. Delaune, and D.-C. Seo, Competitive adsorption of heavy metals onto sesame straw biochar un aqueous solutions, Chemosphere, 142, 77-83 (2016). https://doi.org/10.1016/j.chemosphere.2015.05.093
  28. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, and Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125, 70-85 (2015). https://doi.org/10.1016/j.chemosphere.2014.12.058
  29. T. G. Ammari, Utilization of a natural ecosystem bio-waste; levees of Arundo donax reed, as a raw material of low-cost eco-biosorbent for cadmium removal from aqueous phase, Ecol. Eng., 71, 466-473 (2014). https://doi.org/10.1016/j.ecoleng.2014.07.067
  30. Y. H. Kim, J. Y. Park, Y. J. Yoo, and J. W. Kwak, Removal of lesd using xanthated marine brown alga, Undaria pinnatifida, Process Biochem., 34, 647-652 (1999). https://doi.org/10.1016/S0032-9592(98)00137-X
  31. M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium Ion at Low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26(4) (2015).
  32. M. Uchimiya, S. Chang, and K. T. Klasson, Screening biochars for heavy metal retention in soil: Role of oxygen functional group, J. Hazard. Mater., 190, 432-441 (2011). https://doi.org/10.1016/j.jhazmat.2011.03.063
  33. H. Li, X. Dong, E. B. D. Silva, L. M. D. Oliveira, Y. Chen, and L. Q. Ma, Mechanisms of metal sorption by biochars: Biochar characteristics and modifications, Chemosphere, 178, 466-478 (2017). https://doi.org/10.1016/j.chemosphere.2017.03.072