DOI QR코드

DOI QR Code

Microencapsulation of Iron Oxide Nanoparticles and Their Application in Magnetic Levitation of Cells

산화철 나노입자의 마이크로캡슐화와 이를 이용한 세포의 자력부상 배양

  • Lee, Jin Sil (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Lee, Joon ho (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Shim, Jae Kwon (Department of Biotech & Bioengineering, Kangwon National University) ;
  • Hur, Won (Department of Biotech & Bioengineering, Kangwon National University)
  • 이진실 (강원대학교 화학.생물공학부) ;
  • 이준호 (강원대학교 화학.생물공학부) ;
  • 심재권 (강원대학교 화학.생물공학부) ;
  • 허원 (강원대학교 화학.생물공학부)
  • Received : 2019.11.17
  • Accepted : 2019.11.27
  • Published : 2020.02.10

Abstract

Iron oxide nanoparticles were microencapsulated using fibroin, a protein polymer of silk fiber, for theragnostic applications. The content of iron oxide was determined to be 4.28% by thermogravimetric analysis and 5.11% by magnetometer. A suspension of murine fibroblast 3T3 cells grown in medium supplemented with iron oxide-microcapsules turned clear in response to the magnetic force and the cells aggregated to the magnet direction. Neodymium magnets placed on the top of the culture dish, and attracted cells to the center of the culture surface. The cells collected on the culture surface aggregated to form a rough spheroid of 2 mm in a diameter after 72 h. In the outer layer of the cell aggregate, cells were relatively large and gathered together to form a dense tissue, but the central part was observed to undergo cell death due to the mass transfer restriction. In the outer layer, iron oxide-microcapsules were lined up like chains in the direction of magnetic force. Using microCT, it was demonstrated that the iron oxides inside the cell aggregate were not evenly distributed but biased to the magnetic direction.

실크의 섬유 고분자 단백질인 피브로인을 사용하여 산화철 나노입자가 내포된 테라그노시스가 가능한 마이크로캡슐을 제조하였다. 열중량 분석으로 산화철의 함량은 4.28%, 자력계로는 5.11%로 측정되었다. 산화철 마이크로캡슐이 첨가된 마우스 섬유아세포 3T3 배양액에서 얻어진 세포 현탁액은 자력에 반응하여 맑게 변하고, 세포는 자석 방향으로 응집하였다. 배양접시 상단에 올려둔 네오디뮴 자석은 세포를 배양액 표면 중심으로 세포를 끌어모았다. 배양액 표면에 모인 세포들은 응집하여 72 h 이후 장축의 길이가 2 mm인 비대칭 타원체인 세포 집합체를 형성하였다. 세포집합체의 바깥층에는 세포들이 상대적으로 크고 서로 모여 치밀한 조직을 형성하였으나, 중심부는 물질전달제한으로 세포의 사멸이 진행되는 것으로 관찰되었다. 바깥층에는 산화철 마이크로캡슐이 자력의 방향으로 체인처럼 일렬로 늘어선 현상도 관찰되었다. 마이크로CT를 이용하여 세포응집체 내부의 산화철이 고루 분포하지 않고 자력 방향으로 비대칭적으로 분포하고 있음을 보였다.

Keywords

References

  1. T. Neuberger, B. Schopf, H. Hofmann, M. Hofmann, and B. Von Rechenberg, Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system, J. Magn. Magn. Mater., 293, 483-496 (2005). https://doi.org/10.1016/j.jmmm.2005.01.064
  2. K. Mahmoudi, A. Bouras, D. Bozec, R. Ivkov, and C. Hadjipanayis, Magnetic hyperthermia therapy for the treatment of glioblastoma: A review of the therapy's history, efficacy and application in humans, Int. J. Hyperthermia, 34, 1316-1328 (2018). https://doi.org/10.1080/02656736.2018.1430867
  3. H. Ryu, H. Koo, I. Sun, S. Yuk, K. Choi, K. Kim, and I. Kwon, Tumor-targeting multi-functional nanoparticles for theragnosis: New paradigm for cancer therapy, Adv. Drug Deliv. Rev., 64, 1447-1458 (2012). https://doi.org/10.1016/j.addr.2012.06.012
  4. H. Na, I. Song, and T. Hyeon, Inorganic nanoparticles for MRI contrast agents, Adv. Mater., 21, 2133-2148 (2009). https://doi.org/10.1002/adma.200802366
  5. D. Ling, N. Lee, and T. Hyeon, Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications, Acc. Chem. Res., 48, 1276-1285 (2015). https://doi.org/10.1021/acs.accounts.5b00038
  6. R. Wassel, B. Grady, R. Kopke, and K. Dormer, Dispersion of super paramagnetic iron oxide nanoparticles in poly (D,L-lactide-co-glycolide) microparticles, Colloids Surf. A, 292, 125-130 (2007). https://doi.org/10.1016/j.colsurfa.2006.06.012
  7. M. Talelli, C. Rijcken, T. Lammers, P. Seevinck, G. Storm, C. van Nostrum, and W. Hennink, Superparamagnetic iron oxide nanoparticles encapsulated in biodegradable thermosensitive polymeric micelles: Toward a targeted nanomedicine suitable for image-guided drug delivery, Langmuir, 25, 2060-2067 (2009). https://doi.org/10.1021/la8036499
  8. H. Mok and M. Zhang, Superparamagnetic iron oxide nanoparticle-based delivery systems for biotherapeutics, Expert Opin. Drug Deliv., 10, 73-87 (2013). https://doi.org/10.1517/17425247.2013.747507
  9. N. Vallabani and S. Singh, Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics, 3 Biotech., 8, 279 (2018). https://doi.org/10.1007/s13205-018-1286-z
  10. S. Ashraf, A. Taylor, J. Sharkey, M. Barrow, P. Murray, B. Wilm, H. Poptani, M. Rosseinsky, D. Adams, and R Levy, In vivo fate of free and encapsulated iron oxide nanoparticles after injection of labelled stem cells, Nanoscale Adv., 1, 367-377 (2019). https://doi.org/10.1039/C8NA00098K
  11. D. Porter and F. Vollrath, Silk as a biomimetic ideal for structural polymers, Adv. Mater., 21, 487-492 (2009). https://doi.org/10.1002/adma.200801332
  12. J. Lee and W. Hur, Cellular uptake and fate of fibroin microspheres loaded with randomly fragmented DNA in 3T3 cells, Int. J. Nanomed., 11, 2069-2017 (2016). https://doi.org/10.2147/IJN.S103830
  13. M. Eissa, Polymer encapsulation of magnetic iron oxide nanoparticles for biomedical applications, J. Colloid Sci. Biotechnol., 3, 201-226 (2014). https://doi.org/10.1166/jcsb.2014.1093
  14. N. Go, J. Lee, J. Lee, and W. Hur, Growth, cell cycle progression, and morphology of 3T3 cells following fibroin microsphere ingestion, J. Biomed. Mater. Res. A, 4, 1325-1331 (2015).
  15. J. Lee and W. Hur, Scaffold-free formation of a millimeter-scale multicellular spheroid with an internal cavity from magnetically levitated 3T3 cells that ingested iron oxide-containing microspheres, Biotechnol. Bioeng., 111, 1038-1047 (2014). https://doi.org/10.1002/bit.25156
  16. J. Funnell, B. Balouch, and R. Gilbert, Magnetic composite biomaterials for neural regeneration, Front. Bioeng. Biotechnol., 7, 179 (2019). https://doi.org/10.3389/fbioe.2019.00179
  17. E. Turker and A. Arslan-Yildiz, Recent advances in magnetic levitation: A biological approach from diagnostics to tissue engineering, ACS Biomater. Sci. Eng., 4, 787-799 (2018). https://doi.org/10.1021/acsbiomaterials.7b00700
  18. S. Kralj and D. Makovec, Magnetic assembly of superparamagnetic iron oxide nanoparticle clusters into nanochains and nanobundles, ACS Nano, 9, 9700-9707 (2015). https://doi.org/10.1021/acsnano.5b02328