• Title/Summary/Keyword: Magnetic gradient

Search Result 485, Processing Time 0.024 seconds

Development of novel magnetic filter for paramagnetic particles in high gradient magnetic separation

  • Nishijima, Shigehiro;Nomura, Naoki
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.7-11
    • /
    • 2022
  • We are conducting research and development of magnetic filters for magnetic separation targeting paramagnetic materials. In order to develop a new magnetic filter with a large magnetic gradient, stainless fiber (SUS430, 120 mm × 3 mm) with a triangular cross section was sintered with a high void ratio (~ 70%) and the magnetic filter (20 mm × 2 mm) was created. When this magnetic filter was used to perform magnetic separation of hematite (particle size 50 ㎛) under a maximum magnetic flux density of 1.49 T, high separation rates were obtained.

Effects of axial external magnetic fields on plasma density on substrate in helical resonator plasma source (헬리칼 공명 플라즈마에서 축 방향의 외부 자장이 기판상의 플라즈마 밀도에 미치는 영향)

  • 김태현;태흥식;이용현;이호준;이정해;최경철
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.172-179
    • /
    • 1999
  • The axial distributions of plasma density in a helical resonator plasma with the external magnetic field have been measured using Langmuir probes. Net RF power is set to 200W and chamber pressure is varied from 0.4 mTorr to 100mTorr there are three kinds of eternal magnetic field structure applied on the helical resonator plasma. One is a uniform magnetic field, the second is a positive gradient magnetic field and the third is a negative gradient magnetic field. In the three magnetic field structures, the negative gradient magnetic field is found to show the highest increase in plasma density on the substrate compared with other magnetic structures. Plasma density profile in helical resonator is well consistent with electromagnetic field pattern obtained by computer simulation. It is also found that axial magnetic fields do not affect plasma density distribution in the plasma reactor region, but induce the increase of plasma density in the process chamber region. In order to avoid the nonuniformity of radial density profile, weak magnetic fields under 100G are applied.

  • PDF

Magnetic Separation of FCC Equilibrium Catalyst by HGMS

  • Xiang, Fazhu;He, Pingbo;Chen, Jin
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.770-775
    • /
    • 2001
  • Effects of magnetic field and carrier gas velocity on the magnetic separation of FCC catalyst by a high gradient magnetic separator were studied. The activities of the equilibrium catalyst, the magnetic particles and the nonmagnetic particles were evaluated in a fixed bed microreactor The results showed that heavy metal contaminated catalyst can be selectively separated by means of high gradient magnetic separation at magnetic field 0.5T and carrier gas velocity 0.3m.s$^{-1}$ , and lightly metal contaminated catalyst retained high catalytic activity.

  • PDF

Expressions of Magnetic vector and Magnetic Gradient Tensor due to an Elliptical Cylinder (타원 기둥에 의한 자력 벡터 및 자력 변화율 텐서 반응식)

  • Hyoungrea Rim;Jooyoung Eom
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.2
    • /
    • pp.77-83
    • /
    • 2023
  • In this study, the expressions of magnetic vector and magnetic gradient tensor due to an elliptical cylinder were derived. Igneous intrusions and kimberlite structures are often shaped like elliptical cylinders with axial symmetry and different radii in the strike and perpendicular directions. The expressions of magnetic fields due to this elliptical cylinder were derived from the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor. The magnetic gradient tensor due to an elliptical cylinder is derived by differentiating the magnetic fields. This method involves obtaining a total of 10 triple derivative functions acquired by differentiating the gravitational potential of the elliptical cylinder three times in each axis direction. As the order of differentiation and integration can be exchanged, the magnetic gradient tensor was derived by differentiating the gravitational potential of the elliptical cylinder three times in each direction, followed by integration in the depth direction. The remaining double integration was converted to a complex line integral along the closed boundary curve of the elliptical cylinder in the complex plane. The expressions of the magnetic field and magnetic gradient tensor derived from the complex line integral in the complex plane were shown to be perfectly consistent with those of the circular cylinder derived by the Lipschitz-Hankel integral.

Expressions of Magnetic Field and Magnetic Gradient Tensor due to an Elliptical Disk (타원판에 의한 자력 및 자력 변화율 텐서 반응식)

  • Hyoungrea Rim
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.108-118
    • /
    • 2024
  • In this study, expressions for the magnetic field and magnetic gradient tensor due to an elliptical disk were derived. Igneous intrusions and kimberlite structures often have elliptical cylinders with axial symmetry and elliptical cross sections. An elliptical cylinder with varying cross-sectional areas was approximated using stacks of elliptical disks. The magnetic fields of elliptical disks were derived using the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor, as described in a previous study (Rim, 2024). The magnetic gradient tensor due to an elliptical disk is derived by differentiating the magnetic fields, which is equivalent to obtaining ten triple-derivative functions acquired by differentiating the gravitational potential of the elliptical disk three times in each axis direction. Because it is possible to exchange the order of differentiation, the magnetic gradient tensor is derived by differentiating the gravitational potential of the elliptical disk three times, which is then converted into a complex line integral along the closed boundary curve of the elliptical disk in the complex plane. The expressions for the magnetic field and magnetic gradient tensor derived from a complex line integral in complex plane are perfectly consistent with those of the circular disk derived from the Lipschitz-Hankel integral.

The Closed-form Expressions of Magnetic Field Due to a Right Cylinder (원통형 이상체에 의한 자력 반응식)

  • Rim, Hyoungrea;Eom, Jooyoung
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.50-54
    • /
    • 2020
  • Herein, the closed-form expressions of the magnetic field due to an axially symmetric body such as a right cylinder, are derived. The magnetic field due to a right cylinder is converted from the gravity gradient tensor using Poisson's relation; the magnetic field induced by a constant magnetization can be obtained from the gravity gradient tensor with a constant density. Because of the axial symmetry of the cylinder, the expressions of gravity gradient tensor are derived in cylindrical coordinate and then transformed into Cartesian coordinates for the three components of the magnetic field using an arbitrary magnetization direction.

Dynamic vibration response of functionally graded porous nanoplates in thermal and magnetic fields under moving load

  • Ismail Esen;Mashhour A. Alazwari;Khalid H. Almitani;Mohamed A Eltaher;A. Abdelrahman
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.475-493
    • /
    • 2023
  • In the context of nonclassical nonlocal strain gradient elasticity, this article studies the free and forced responses of functionally graded material (FGM) porous nanoplates exposed to thermal and magnetic fields under a moving load. The developed mathematical model includes shear deformation, size-scale, miscorstructure influences in the framework of higher order shear deformation theory (HSDT) and nonlocal strain gradient theory (NSGT), respectively. To explore the porosity effect, the study considers four different porosity models across the thickness: uniform, symmetrical, asymmetric bottom, and asymmetric top distributions. The system of quations of motion of the FGM porous nanoplate, including the effects of thermal load, Lorentz force, due to the magnetic field and moving load, are derived using the Hamilton's principle, and then solved analytically by employing the Navier method. For the free and forced responses of the nanoplate, the effects of nonlocal elasticity, strain gradient elasticity, temperature rise, magnetic field intensity, porosity volume fraction, and porosity distribution are analyzed. It is found that the forced vibrations of FGM porous nanoplates under thermal and live loads can be damped by applying a directed magnetic field.

Influence of axial magnetic field on the plasma density on the substrate in helical resonator (헬리칼 공명 플라즈마의 기판플라즈마밀도에 미치는 축방향자계의 영향)

  • Kim, Tae-Hyun;Kim, Moon-Young;Jang, Sang-Hun;Tae, Heung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.376-378
    • /
    • 1997
  • Plasma density and its axial distribution and uniformity on the substrate in a helical resonator plasma in the external magnetic field have been measured using Langmuir probes. Net RF power is set to 200W and chamber pressure is varied from $1{\times}10^{-1}Torr$ to $1{\times}10^{-4}Torr$. There are three kinds of external magnetic field structure applied on the helical resonator plasma. One is a uniform magnetic field, another is a plus gradient magnetic field and the third is a minus gradient magnetic field. Of the three magnetic field structure, the minus gradient magnetic field is found to show the highest increase in plasma density on the substrate compared with other magnetic structures. In order to avoid radial density ununiformity, weak magnetic fields under 100Gauss are applied.

  • PDF

Microfluidic immunoassay using superparamagnetic nanoparticles in an enhanced magnetic field gradient (강화된 자기장 구배 하에서 나노자성입자를 이용한 미세유체 기반의 면역 측정)

  • Hahn, Young-Ki;Kang, Joo-H.;Kim, Kyu-Sung;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.158-163
    • /
    • 2006
  • This paper reports a novel immunoassay method using superparamagnetic nanoparticles and an enhanced magnetic field gradient for the detection of protein in a microfluidic device. We use superparamagnetic nanoparticles as a label and fluorescent polystyrene beads as a solid support. Based on this platform, magnetic force-based microfluidic immunoassay is successfully applied to analyze the concentration of IgG as model analytes. In addition, we present ferromagnetic microstructure connected with a permanent magnet to increase magnetic flux density gradient (dB/dx, ${\sim}10^{4}$ T/m), which makes limit of detection reduced. The detection limit is reduced to about 1 pg/mL.

Content and Distribution of Transition Metals and Rare Earth Elements in Magnetically and Mechanically Separated Brown Coal Ash

  • Malikov, Sh.R.;Pikul, V.P.;Mukhamedshina, N.M.;Sandalov, V.N.;Kudiratov, S.;Ibragimova, E.M.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.365-369
    • /
    • 2013
  • Coal ash is known to contain a noticeable amount of valuable elements, including transition metals and lanthanides. Therefore it is quite actual problem to extract them for metallurgy and other applications. This paper presents the results of high gradient magnetic and mechanical separation, microscopy, element analyses and optical spectroscopy of brown coal ash taken from the combustion camera and chimney-stalk of Angren thermal power station. The separated magnetic fraction was 3.4 wt.%, where the content of Fe in ferrospheres increased to 58 wt.%. The highest contents of Fe and rare earth elements were found in the fine fractions of $50-100{\mu}m$. Optical absorption spectroscopy of water solutions of the magnetic fractions revealed $Fe^{2+}$ and $Fe^{3+}$ ions in the ratio of ~1:1. The separated coal ash could be used for cleaning of technological liquid waste by means of the high gradient magnetic field.