DOI QR코드

DOI QR Code

Expressions of Magnetic vector and Magnetic Gradient Tensor due to an Elliptical Cylinder

타원 기둥에 의한 자력 벡터 및 자력 변화율 텐서 반응식

  • Hyoungrea Rim (Department of Earth Science Education, Pusan National University) ;
  • Jooyoung Eom (Department of Earth Science Education, Kyungpook National University)
  • 임형래 (부산대학교 지구과학교육과) ;
  • 엄주영 (경북대학교 지구과학교육과)
  • Received : 2023.04.17
  • Accepted : 2023.05.23
  • Published : 2023.05.31

Abstract

In this study, the expressions of magnetic vector and magnetic gradient tensor due to an elliptical cylinder were derived. Igneous intrusions and kimberlite structures are often shaped like elliptical cylinders with axial symmetry and different radii in the strike and perpendicular directions. The expressions of magnetic fields due to this elliptical cylinder were derived from the Poisson relation, which includes the direction of magnetization in the gravity gradient tensor. The magnetic gradient tensor due to an elliptical cylinder is derived by differentiating the magnetic fields. This method involves obtaining a total of 10 triple derivative functions acquired by differentiating the gravitational potential of the elliptical cylinder three times in each axis direction. As the order of differentiation and integration can be exchanged, the magnetic gradient tensor was derived by differentiating the gravitational potential of the elliptical cylinder three times in each direction, followed by integration in the depth direction. The remaining double integration was converted to a complex line integral along the closed boundary curve of the elliptical cylinder in the complex plane. The expressions of the magnetic field and magnetic gradient tensor derived from the complex line integral in the complex plane were shown to be perfectly consistent with those of the circular cylinder derived by the Lipschitz-Hankel integral.

이 논문에서는 타원 기둥 형태의 이상체에 의한 자력 벡터와 자력 변화율 텐서 반응식을 유도하였다. 화성암 관입이나 킴벌라이트 구조 등은 축 대칭성을 가지면서 주향 방향과 수직한 방향의 반지름이 서로 다른 타원 기둥 형태를 가지는 경우가 많다. 이런 타원 기둥의 자력 반응은 이전 논문에서 유도한 중력 변화율 텐서에 자화 방향에 대한 정보를 포함시킨 포아송 관계식을 이용하여 유도하였다. 타원 기둥의 자력 변화율 텐서는 벡터 자력을 미분하여 유도하는데 삼중 적분으로 표현되는 타원 기둥의 인력 퍼텐셜을 각 축방향으로 3회 미분한 총 10개의 삼중 미분 함수를 구하는 것과 동일하다. 미분과 적분의 순서는 바꾸는 것이 가능하므로 결과적으로 자력 변화율 텐서는 타원 기둥의 인력 퍼텐셜을 3회 미분한 후, 깊이 방향으로 적분하고 나머지 이중 적분은 복소 평면에서 타원 기둥의 단면을 폐곡선으로 하는 경로를 따라 선적분으로 변환하여 유도된다. 이 논문에서 복소 평면에서 선적분으로 유도한 자력 및 자력 변화율 텐서 반응식은 립쉬츠-한켈 적분으로 유도한 원기둥의 자력 및 자력 변화율 텐서 반응식과 완벽하게 일치함을 보였다.

Keywords

Acknowledgement

이 논문은 기상청 기상·지진 See-At 기술 개발 연구 사업(KMI 2018-02710)의 지원으로 수행되었습니다.

References

  1. Battaglia, M., Gottsmann, J. Carbone, D., and Fernandez, J., 2008, 4D volcano gravimetry, Geophysics, 73(6), WA3-WA18, doi: 10.1190/1.2977792
  2. Beiki, M., Clark, D. A., Austin, J. R., and Foss, C. A., 2012, Estimating source location using normalized magnetic source strength calculated from magnetic gradient tensor data, Geophysics, 77(6), J23-J37, doi: 10.1190/geo2011-0437.1
  3. Blakely, R. J., 1996, Potential Theory in gravity and magnetic applications, Cambridge University Press, doi: 10.1017/CBO9780511549816
  4. Eason, G., Noble, B., and Sneddon, I. N., 1955, On certain integrals of Lipschitz-Hankel type involving products of Bessel functions, Philos. Trans. R. Soc. A, Math. Phys. Sci., 247(935), 529-551, doi: 10.1098/rsta.1955.0005
  5. Gradshteyn, I. S., and Ryzhik, I. M., 1980, Table of integrals, series, and products, Academic Press, doi: 10.1016/C2013-0-10754-4
  6. Kamm, J., Lundin, I. A., Bastani, M., Sadeghi, M., and Pedersen, L. B., 2015, Joint inversion of gravity, magnetic, and petrophysical data - A case study from a gabbro intrusion in Boden, Sweden, Geophysics, 80(5), B131-B152, doi: 10.1190/geo2014-0122.1
  7. Kwok, Y. K., 1989, Conjugate complex variables method for the computation of gravity anomalies, Geophysics, 54(12), 1629-1637, doi: 10.1190/1.1442631
  8. Kwok, Y.-K., 1991a, Singularities in gravity computation for vertical cylinders and prims, Geophysical Journal International, 104(1), 1-10, doi: 10.1111/j.1365-246X.1991.tb02490.x
  9. Kwok, Y. K., 1991b, Gravity gradient tensors due to a polyhedron with polygonal facets, Geophysical Prospecting, 39(3), 435-443, doi: 10.1111/j.1365-2478.1991.tb00320.x
  10. Kwok, Y. K., and Beyer, L. A., 1993, Gravity due to a body with rotational symmetry about a vertical axis, Geophysics, 58(2), 298-306, doi: 10.1190/1.1443414
  11. LaFehr, T. R., and Nabighian, M. N., 2012, Fundamentals of gravity exploration, Society of Exploration Geophysicists, doi: 10.1190/1.9781560803058
  12. Lowrie, W., and Fichtner, A., 2020, Fundamentals of Geophysics 3rd ed., Cambridge University Press, doi: 10.1017/9781108685917
  13. Matende, K., and Mickus, K., 2021, Magnetic and gravity investigation of kimberlites in north-central Botswana, Geophysics, 86(2), B67-B78, doi: 10.1190/geo2020-0450.1
  14. Ren, Z., Chen, C., Tang, J., Chen, H., Hu, S., Zhou, C., and Xiao, X., 2017, Closed-form formula of magnetic gradient tensor for a homogeneous polyhedral magnetic target: A tetrahedral grid example, Geophysics, 82(6), WB21-WB28, doi: 10.1190/geo2016-0470.1
  15. Ren, Z., Chen, H., Chen, C., Zhong, Y., and Tang, J., 2019, New analytical expression of the magnetic gradient tensor for homogeneous polyhedrons, Geophysics, 84(3), A31-A35, doi: 10.1190/geo2018-0741.1
  16. Rim, H., 2023, The Expressions of vector gravity and gravity gradient tensor due to an elliptical cylinder, Geophys. and Geophys. Explor., 26(1), 1-7, doi: 10.7582/GGE.2023.26.1.001. (in Korean with English abstract)
  17. Rim, H., and Eom, J., 2020, The closed-form expressions of magnetic field due to a right cylinder, Geophys. and Geophys. Explor., 23(1), 50-54, doi: 10.7582/GGE.2020.23.1.050. (in Korean with English abstract)
  18. Rim, H., 2020, The closed-form expressions of magnetic gradient tensor due to a circular cylinder, Geophys. and Geophys. Explor., 23(2), 67-71, doi: 10.7582/GGE.2020.23.2.067. (in Korean with English abstract)
  19. Wang, K., and Yang, D., 2023, Joint inversion with petrophysical constraints using indicator functions and the extended alternating direction method of multipliers, Geophysics, 88(1), R49-R64, doi: 10.1190/geo2022-0167.1