• 제목/요약/키워드: Magnetic Resonance Image

검색결과 945건 처리시간 0.029초

Should We Recommend Ultrasonography for an Incidental Thyroid Nodule on Additional Cervicothoracic Sagittal T2-Weighted Image of Lumbar Spine MRI?

  • Cho, Hee Woo;Park, Jin-Oh;Lee, Young Han;Chung, Soo Yoon;Suh, Jin-Suck
    • Investigative Magnetic Resonance Imaging
    • /
    • 제19권4호
    • /
    • pp.224-230
    • /
    • 2015
  • Purpose: To determine whether we should recommend ultrasonography (US) for an incidental thyroid nodule identified by additional cervicothoracic sagittal T2-weighted image (C-T sag T2WI) of lumbar spine magnetic resonance imaging (MRI). Materials and Methods: A retrospective study of 61 patients who underwent both lumbar spine MRI and thyroid US between December 2011 and April 2015 was conducted. For all US-found thyroid nodules > 1 cm, investigators evaluated whether there was any correlation between thyroid nodule detectability by C-T sag T2WI and US features such as echogenicity, composition, or suspicion of malignancy. Results: Solid hypoechoic (2/4; 50%) or mixed echoic nodules (4/8; 50%) appeared to be found relatively more easily by C-T sag T2WI than more benign-looking solid isoechoic (1/4; 25%) or spongiform nodules (0/6; 0%). Among six nodules with ultrasonographic suspicion for malignancy, only one nodule was detected by C-T sag T2WI. Conclusion: If an incidental thyroid nodule is seen by C-T sag T2WI, it would be better to recommend thyroid US for identifying malignancy.

1.5T 자기공명영상을 이용한 물리적 영상 특성에 대한 연구 (Study on the Physical Imaging Characteristics by Using Magnetic Resonance Imaging 1.5T)

  • 민정환;정회원;한지현;이시내;박장호;김기원;김현수
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권5호
    • /
    • pp.329-334
    • /
    • 2019
  • This study was purpose to quantitative evaluation of noise power spectrum(NPS) and studied the quantitative evaluation and characteristics of modulation transfer function(MTF) by obtain the optimal edge image by using Coil in magnetic resonance imaging(MRI) equipment through Fujita theory using edge method. The MRI equipment was used (Tim AVANTO 1.5T, Siemense healthcare system, Germany) and the head matrix coil were 12channels(elements) receive coil. The NPS results of showed the best value of 0.004 based on the T2 Nyquist frequency of $1.0mm^{-1}$, and the MTF results of showed that the T1 and T2 values were generally better than the T1 CE and T1 CE FC values. The characteristics of this study were to explain the characteristic method of image quality evaluation in general. To present the quantitative evaluation process and results in the evaluation of MRI image characteristics in radiology.

치아 임플란트와 보철에서 발생하는 자기공명영상의 인공물 감소방안 연구 (A Study on the Artifact Reduction Method of Magnetic Resonance Imaging in Dental Implants and Prostheses)

  • 신운재
    • 한국방사선학회논문지
    • /
    • 제13권7호
    • /
    • pp.1025-1033
    • /
    • 2019
  • 뇌 질환과 두경부 검사에서 전산화단층촬영의 선속 경화현상이 없는 자기공명영상이 조직의 높은 대조도와 우수한 분해능의 영상을 획득하는 검사 방법으로 인식되고 있지만 구강 내 금속 이식물이 있는 경우는 자화율 인공물(magnetic susceptibility artifact)이 발생되어 영상 진단에 장해 요소가 된다. 따라서 본 연구는 자기공명영상에서 치아 임플란트와 보철에 의한 인공물 감소 방안을 강구하고자 한다. 자기공명영상에서 임플란트에 의한 인공물 발생은 GE 기법에서 TE가 짧을수록 신호 크기가 증가하였고, 물의 온도 변화에서는 일관성이 없게 나타났다. SE 기법에서도 공기보다 물의 신호 크기가 전반적으로 높았지만, 신호대 잡음비는 공기와 온도에 의한 차이가 없었다. EPI 기법에서는 공기보다 물이 있을 때 정량적, 정성적으로 인공물이 적게 발생한 영상을 얻을 수 있었고, 특히 물 온도 20°와 30°에서 신호 대 잡음비가 가장 높게 측정되었다. 결론적으로 EPI 기법에서 물 온도 20°와 30°의 물주머니를 이용하여 뇌 확산강조영상을 획득하면 임플란트와 보철물에 의한 자화율인공물이 감소되어 보다 진단적 가치가 있는 영상을 획득할 수 있을 것으로 사료된다.

측두하악관절 장애 환자의 임상증상과 자기공명영상에 관한 비교 연구 (A comparison of clinical symptoms and magnetic resonance images in temporomandibular joint disorders)

  • 최용석;황의환;이상래
    • Imaging Science in Dentistry
    • /
    • 제33권2호
    • /
    • pp.107-112
    • /
    • 2003
  • Purpose : To determine the relationship between clinical symptoms and magnetic resoncance (MR) images in patients presenting with temoporomandibular joint (TMJ) disorders. Materials and Methods: This study was based on 172 joints in 86 patients presenting with TMJ disorders. Joint pain and sound during jaw opening and closing movements were recorded, and the possible relationship between disc positions and bony changes of the condylar head and the articular fossa in MR images in the oblique sagittal planes were examined. Data were analyzed by Chi-square test. Results : There was no statistically significant relationship between clinical symptoms and MR images in the patients with TMJ disorders. Conclusion: In the patient with TMJ disorders, joint pain and sound could not be specific clinical symptoms that are related with MR image findings, and asymptomatic joints did not necessarily imply that the joints are normal according to MR image findings.

  • PDF

Findings Regarding an Intracranial Hemorrhage on the Phase Image of a Susceptibility-Weighted Image (SWI), According to the Stage, Location, and Size

  • Lee, Yoon Jung;Lee, Song;Jang, Jinhee;Choi, Hyun Seok;Jung, So Lyung;Ahn, Kook-Jin;Kim, Bum-soo;Lee, Kang Hoon
    • Investigative Magnetic Resonance Imaging
    • /
    • 제19권2호
    • /
    • pp.107-113
    • /
    • 2015
  • Purpose: Susceptibility weighted imaging (SWI) is a new magnetic resonance technique that can exploit the magnetic susceptibility differences of various tissues. Intracranial hemorrhage (ICH) looks a dark blooming on the magnitude images of SWI. However, the pattern of ICH on phase images is not well known. The purpose of this study is to characterize hemorrhagic lesions on the phase images of SWI. Materials and Methods: We retrospectively enrolled patients with ICH, who underwent both SWI and precontrast CT, between 2012 and 2013 (n = 95). An SWI was taken, using the 3-tesla system. A phase map was generated after postprocessing. Cases with an intracranial hemorrhage were reviewed by an experienced neuroradiologist and a trainee radiologist, with 10 years and 3 years of experience, respectively. The types and stages of the hemorrhages were determined in correlation with the precontrast CT, the T1- and T2-weighted images, and the FLAIR images. The size of the hemorrhage was measured by a one- directional axis on a magnitude image of SWI. The phase values of the ICH were qualitatively evaluated: hypo-, iso-, and hyper-intensity. We summarized the imaging features of the intracranial hemorrhage on the phase map of the SWI. Results: Four types of hemorrhage are observed: subdural and epidural; subarachnoid; parenchymal hemorrhage; and microbleed. The stages of the ICH were classified into 4 groups: acute (n = 34); early subacute (n = 11); late subacute (n = 15); chronic (n = 8); stage-unknown microbleeds (n = 27). The acute and early subacute hemorrhage showed heterogeneous mixed hyper-, iso-, and hypo-signal intensity; the late subacute hemorrhage showed homogeneous hyper-intensity, and the chronic hemorrhage showed a shrunken iso-signal intensity with the hyper-signal rim. All acute subarachnoid hemorrhages showed a homogeneous hyper-signal intensity. All parenchymal hemorrhages (> 3 mm) showed a dipole artifact on the phase images; however, microbleeds of less than 3 mm showed no dipole artifact. Larger hematomas showed a heterogeneous mixture of hyper-, iso-, and hypo-signal intensities. Conclusion: The pattern of the phase value of the SWI showed difference, according to the type, stage, and size.

높은 자장하에서 자기공명 영상 왜곡이 완화된 생체용 Ti 복합재료 (Bio-applicable Ti-based Composites with Reduced Image Distortion Under High Magnetic Field)

  • 김성철;김유찬;석현광;양석조;손인진;이강식;이재철
    • 대한금속재료학회지
    • /
    • 제50권5호
    • /
    • pp.401-406
    • /
    • 2012
  • When viewed using a magnetic resonance imaging (MRI) system, invasive materials inside the human body, in many cases, severely distort the MR image of human tissues. The degree of the MR image distortion increases in proportion not only to the difference in the susceptibility between the invasive material and the human tissue, but also to the intensity of the magnetic field induced by the MRI system. In this study, by blending paramagnetic Ti particles with diamagnetic graphite, we synthesized $Ti_{100-x}C_x$ composites that can reduce the artifact in the MR image under the high-strength magnetic field. Of the developed composites, $Ti_{70}C_{30}$ showed the magnetic susceptibility of ${\chi}=67.6{\times}10^{-6}$, which corresponds to 30% of those of commercially available Ti alloys, the lowest reported in the literature. The level of the MR image distortion in the vicinity of the $Ti_{70}C_{30}$ composite insert was nearly negligible even under the high magnetic field of 4.7 T. In this paper, we reported on a methodology of designing new structural materials for bio-applications, their synthesis, experimental confirmation and measurement of MR images.

Preliminary Application of Synthetic Computed Tomography Image Generation from Magnetic Resonance Image Using Deep-Learning in Breast Cancer Patients

  • Jeon, Wan;An, Hyun Joon;Kim, Jung-in;Park, Jong Min;Kim, Hyoungnyoun;Shin, Kyung Hwan;Chie, Eui Kyu
    • Journal of Radiation Protection and Research
    • /
    • 제44권4호
    • /
    • pp.149-155
    • /
    • 2019
  • Background: Magnetic resonance (MR) image guided radiation therapy system, enables real time MR guided radiotherapy (RT) without additional radiation exposure to patients during treatment. However, MR image lacks electron density information required for dose calculation. Image fusion algorithm with deformable registration between MR and computed tomography (CT) was developed to solve this issue. However, delivered dose may be different due to volumetric changes during image registration process. In this respect, synthetic CT generated from the MR image would provide more accurate information required for the real time RT. Materials and Methods: We analyzed 1,209 MR images from 16 patients who underwent MR guided RT. Structures were divided into five tissue types, air, lung, fat, soft tissue and bone, according to the Hounsfield unit of deformed CT. Using the deep learning model (U-NET model), synthetic CT images were generated from the MR images acquired during RT. This synthetic CT images were compared to deformed CT generated using the deformable registration. Pixel-to-pixel match was conducted to compare the synthetic and deformed CT images. Results and Discussion: In two test image sets, average pixel match rate per section was more than 70% (67.9 to 80.3% and 60.1 to 79%; synthetic CT pixel/deformed planning CT pixel) and the average pixel match rate in the entire patient image set was 69.8%. Conclusion: The synthetic CT generated from the MR images were comparable to deformed CT, suggesting possible use for real time RT. Deep learning model may further improve match rate of synthetic CT with larger MR imaging data.

DC offset을 보정한 나선 주사 초고속 자기공명영상의 재구성 알고리즘 (Improved Reconstruction Algorithm for Spiral Scan Fast MR Imaging with DC offset Correction)

  • 안창범;김휴정
    • 대한의용생체공학회:의공학회지
    • /
    • 제19권3호
    • /
    • pp.243-250
    • /
    • 1998
  • 초고속 자기공명 영상 기법의 일종인 나선 주사 영상의 재구성을 위하여 k-공간에서 극좌표와 직각 좌표계를 기초로한 재구성방법들을 분석하였다. 나선 주사 영상의 재구성은 나선 궤적상에서 측정된 데이터를 극좌표나 직각 좌표계로 변환시키기 위하여 보간 기술들이 사용된다. 나선주사 영상의 다양한 재구성 알고리즘들을 시험하여 보았고, 재구성된 영상의 질을 비교하였다. 본 연구진이 제안한 투영 영역에서 dc-offset보정을 한 향상된 재구성 알고리즘이 시뮬레이션을 통하여 가장 우수한 것으로 나타났다. 또한, 기존의 재구성 방법들에서 나타났던 영상 artifact도 제안된 방법에서는 완전히 사라짐을 확인할 수 있었다.

  • PDF

깁스분포와 라인모델을 이용한 3차원 자기공명영상의 분류 (Classification of a Volumetric MRI Using Gibbs Distributions and a Line Model)

  • Junchul Chun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제2권1호
    • /
    • pp.58-66
    • /
    • 1998
  • 목적: 본 논문은 마코브 랜덤필드(Markov Random Field)와 깁스 랜덤필드(Gibbs Random Field) 및 라인모델(LIne Model)에 기반한 3차원 자기공명영상의 분류 방법을 소개하고자 하였다. 대상 및 방법 : 통계적으로 이질적 성분들로 구성된 영상을 대상으로한 깁스분류 결과는 영상내의 국소적으로 정적인 영역들을 이웃화소 시스템 내에서 정의되는 상호작용 인자(inetraction parameter)의 메커니즘에 의해 분리하\ulcorner로서 개선시킬 수 있다. 이를 위하여 영상에서 라인모델의 생성을 고려할 수 있으며, 본 논문에서는 영상의 미분방법에 근거한 다중신호영상을 위한 라인모델을 구축하였다. 라인모델은 서로 상이한 통게적 특성을 갖는 영역사이에 존재하는 관측할 수 없는 라인필드의 존재 유무를 확률 값으로 제공한다. 영상으로부터 획득한 라이모델은 Gibbs 분류기의 에너지함수 값을 결정하는 상호작용 인자 값을 결정하는데 사용된다. 결과 : 3차원 자기공명영상의 분류를 위한 MRS-Gibbs 분류기는 영상분류의 도메인이 일반적인 이차원 영상의 $E^{2}$ 공간에서 $E^{3}$ 공간으로 확장되었다. 개발된 깁스분류기를 이용한 자기공명여상의 분류결과 기존의 context free 분류방법에 의한 결과에 비하여 특히 동일성질을 갖고 있는 영역 및 경계부분 등의 분류결과가 우수함을 알 수 있었다. 결론 : 본 논문에서는 다중 신호, 3차원 자기공명영상을 위한 라인모델을 구축하고 그로부터 MRF-Gibbs분류기의 에너지함수를 결정하기 위한 상호작용 인자를 유도하였다.

  • PDF

Investigation of light stimulated mouse brain activation in high magnetic field fMRI using image segmentation methods

  • Kim, Wook;Woo, Sang-Keun;Kang, Joo Hyun;Lim, Sang Moo
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.11-18
    • /
    • 2016
  • Magnetic resonance image (MRI) is widely used in brain research field and medical image. Especially, non-invasive brain activation acquired image technique, which is functional magnetic resonance image (fMRI) is used in brain study. In this study, we investigate brain activation occurred by LED light stimulation. For investigate of brain activation in experimental small animal, we used high magnetic field 9.4T MRI. Experimental small animal is Balb/c mouse, method of fMRI is using echo planar image (EPI). EPI method spend more less time than any other MRI method. For this reason, however, EPI data has low contrast. Due to the low contrast, image pre-processing is very hard and inaccuracy. In this study, we planned the study protocol, which is called block design in fMRI research field. The block designed has 8 LED light stimulation session and 8 rest session. All block is consist of 6 EPI images and acquired 1 slice of EPI image is 16 second. During the light session, we occurred LED light stimulation for 1 minutes 36 seconds. During the rest session, we do not occurred light stimulation and remain the light off state for 1 minutes 36 seconds. This session repeat the all over the EPI scan time, so the total spend time of EPI scan has almost 26 minutes. After acquired EPI data, we performed the analysis of this image data. In this study, we analysis of EPI data using statistical parametric map (SPM) software and performed image pre-processing such as realignment, co-registration, normalization, smoothing of EPI data. The pre-processing of fMRI data have to segmented using this software. However this method has 3 different method which is Gaussian nonparametric, warped modulate, and tissue probability map. In this study we performed the this 3 different method and compared how they can change the result of fMRI analysis results. The result of this study show that LED light stimulation was activate superior colliculus region in mouse brain. And the most higher activated value of segmentation method was using tissue probability map. this study may help to improve brain activation study using EPI and SPM analysis.