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Purpose : This paper introduces a new three dimensional Magnetic Resonance
Image classification which is based on Markov Random Field-Gibbs Random Field
with aline model.

Material and Methods : The performance of the Gibbs Classifier over a stat-
istically heterogeneous image can be improved if the local stationary regions in the
image are disassociated from each other through the mechanism of the interaction
parameters defined at the local neighborhood level. This usually involves the con-
struction of a line model! for the image. In this paper we construct a line model for
multisignature images based on the differential of the image which can provide an
a priori estimate of the unobservable line field, which may lie in regions with sig-
nificantly different statistics. The line model estimated from the original image data
can in turn be used to alter the values of the interaction parameters of the Gibbs
Classifier.

Results : MRF-Gibbs classifier for volumetric MR images is developed under
the condition that the domain of the image classification is E’ space rather than the
conventional E* space. Compared to context free classification, MRF-Gibbs
classifier performed better in homogeneous and along boundaries since contextual
information is used during the classification.

Conclusion : We construct a line model for multisignature, multidimensional
image and derive the interaction parameter for determining the energy function of
MRF-Gibbs classifier.

Index words : Markov Random Ficld ; Gibbs Random Field ; Line Model
Gibbs Classifier ; Volumetric MRI

Introduction

For the visualization or quantitative analysis of
normal or abnormal soft tissue in MRI, proper classi-
fication of soft tissues is needed. In MRI the gray-
level distributions between different soft tissues are

not widely distributed and even more the com-
plexity of tissue boundaries cause many pixels to
contain mixtures of tissues. It is well-known that it is
possible to obtain multiple images, so-called multi-
echo images of same anatomical section of the human
body using different pulse sequence in Magnetic
Resonance Imaging(l,z]. Fach image has a different
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response characteristic to each soft tissue class, thus
this property of MRI and analysis of multiple image
provide the potential for improving the accuracy of
tissue classification(3, 4, 5).

The Gibbs Classifier is a discrete optimizing clas-
sifier which assign the image location X with obser-
ved image intensities f(x) to the class w; by estimat-
ing the Maximum A Posteriori( MAP) estimate of the
class distribution of the image(6, 7).

Gibbs classifier perform this task by equating the
Markovian structure of the image with an equiv-
alent Gibbs distributional structure. Thus this sim-
plifies the problem of estimating all of the condi-
tionals needed by the Markovian model by replac-
ing that estimation problem with much simpler
problem of estimating the parameters of a variety of
potential functions which are identified with local
neighborhoods of each image site. A common model
for defining such potential functions involves the
construction of interaction parameters i.e., a family
of parameters which serve to indicate the relative
strength of a neighboring site’s contribution to the
classification of the site under consideration.

In this paper, we present a computationally inex-
pensive, novel approach for the classification of vol-
umetric multisignature Magnetic Resonance images.
A statistical volumetric image model based on the
Markov Random Filed and Gibbs Random Field
model and an algorithm for the classification of the
image will be pursued. To estimate the interaction
parameter of the potential functions, we construct
an unobservable line field, to be estimated from the
original data, which can in turn be used to alter the
values of the interaction parameters if it is thought
that a particular clique is transected by aline. This is
just the exchange of one difficult problem : classifi-
cation for another : edge detection(8).

Theory and Method

1) MRF-Gibbs Model

The main idea of the MRF-Gibbs classification al-
gorithm lies the Markov Random Field(MRF} as-
sumption, which states that the true interpretation
of any pixel X ,;, given the true interpretation of all
image pixels depends only on the interpretation of
its neighboring pixels in a neighborhood N ;.

P& i=wn |G)=PKij=w; | N ) [1]

This interpretation of a pixel can be used for the
assignment, or classification of a pixel to a class wy,
which represents a labeling of the pixel from a given
set N;; of L possible classes. These classes may corre-
spond to tissue types of the MRL If N is a four
pixel neighbor-hood, the assignment of pixel N;; to
a class w; can be evaluated in terms of the posterior
probability Play, | X :;,Q) the conditional probability
that the assignment of class @y is correct given obser-
vation X;; and prior information Q. From MRF as-
sumption, the best classification for X ;;is the class ¢
¢ that maximizes equation[z].
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The MRF-Gibbs equivalence shows that the de-
cision rule, defined above, can be written in a fol-
lowing Gibbsian form,

| W) =PlaP( N Xy | wi)
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and that this Gibbsian equivalent can be evaluated
using an energy function, U (X ;j, wy). The MRF-Gibbs
classification process consists of assigning the pixels
of an image those class values which produce a maxi-
mum posterior distribution when the energy is
minimized. Therefore, maximization of the posterior
distribution for ta fixed X, is determined by
minimizing the energy functionU { ;;, ). As an ap-
proximate solution to this maximization problem
can be solved using simulated annealing.

2) A Line Model for Gibbs Classifier

The derivation of energy function typically invol-
ves understanding the nature of the image, identif-
ying a meaningful neighborhood shape, and des-
cribing the unique attributes of the image regions or
structure. In this section, we construct an edge
model for multisignature, multidimensional image
and derive the Gibbs interaction parameter for
determining the energy function. A multisignature
volumetric MR image can be considered as amap

f:U CR*—>F CR™
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where U is the image domain and n is the spectral di-
mension of the image. One conventionally thinks of
F as the unit hypercube inR ". Most modern multis-
ignature MR images aries from multiecho imaging
techniques, and n=2 is the spectral dimension that
we deal with in this paper. Fig. 1 shows both echoes
taken from a midbrain slice of a patient with signifi-
cant hydrocephalus.

The bulk of this section is a restatement of el-
ementary results in differential geometry(Q, 10).
Suppose E and F are two normed vector spaces, and
let L(E,F} be the space of continuous linear maps
from E to F. Throughout the following U is taken to
be open. Then the function(image), / :U CE —F, is
differentiable at #; :U if thereisan I. € LE, F)such
that the map g;:U € E —>F defined by &:(2¢): f(2t:)
L (et —245) is tangent to f at #;. Then one defines
the derivative of f at #; to be d f(#¢4))=L . When U
CR”"and f :U —R"is differentiable, then the lin-
ear map d f(x) has the common expression in terms
of the Jacobian matrix with respect to the standard
basesof R "and R ™, given by

Cof' of! . of
axt axt 2x"
ax'  ax’ ax"
df(x)=|  eeeeeeeeeens [4]
2f" af" | af”
ax!  axt ax”

where it is understood that the partials are evaluated
at x=(x', %, 2. x"). We denote the evaluation of

Fig. 1. Echoes 1 and 2

df(x)one €E bydf(x) - e.
If f:U CE —F ; the f has a derivative in the di-
rectione €F at # €U provided

a%f(u‘HLe) | [5]

exists. If f is differentiable, then the directional
derivatives of f all exist at 2 and are given by
d
7 Sutte) | i=dflu) - e [6]

This leads to a strategy for characterizing the map
which we call the max norm characterization ; we set
A flu))=e, where e, € satisfies

| df(e) - e | = | df(ee) - e | 4]7]

aAr
ee E |elz=1

In the simplest meaningful case E=F=R 2) €, is one
of the 7 periodic extension of e=(sin 6, cos ). In
higher dimension it may be necessary to resort to a
numerical strategy determine ¢ /(2)). We will use
the distribution of the 2-norm

| ldf @) | o= | dfle) - e | - [8]

as a means of determining the relative strength of
map d f(t). We have observed that a not unreason-
able fit to the distribution of | o F(20) | » can be
given by the Rayleigh distributionR (o) with o set to
themodeof | A f(2) | »

LetR{x, o) be the Rayleigh distribution function
with parameter ¢;then we define the edge prob-
ability under d f to be the random variable
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pled=R(| dS@) | 2;m( | S | ) [9]

T

where #2is taken to be the mode. As defined in the
usual way in the Gibbs paradigm supposec # €EF isa
site with neighbors {2¢;, #5, ***, #,} and let {f1, B,

--+, Bmi be the interaction parameters between 7 and
its neighbors such that —a < f; < o. Whenever f;
is positive, # and #; are statically more likely to arise
from the same underlying class; whenever f; is
negative, # and #; are less likely to arise from the

same class. One simple assignment to the interaction
parameters is to assign

O=hl(o(t —2pder)) [10]

to that 2; most proximal to the cardinal direction of
€ to the #; in the anti-cardinal direction and an in-
terpolate between —@; and §; to the remaining sites
depending on their proximity to #+€, or #—e&,.
The function # in the equation (10) can be taken to
be any function which maintains the intent of the in-
teraction parameters. Two obvious candidates are
the linear and cubic variations #oll — 2pdei))=o

(1 —2p4er) and hla(1 — 2pded))=ol1 —2pdes).

Experimental Results

MRE-Gibbs classifier for volumetric MR images is
developed under the condition that the domain of
the image classification is E° rather than the conven-

Fig. 2. Reconstructed Volumetric Magnetic Resonance Ima-
gery

tional E ; space. The implementation of the MRF-
Gibbs classifier was approach through a series of
phase. The phases were, construction of a volu-
metric image, clustering analysis of such image, par-
ameter estimation for the Gibbs energy function,
and MRE-Gibbs re-classification iteration.

The first phase to prepare for the Gibbs classifi-
cation of a volumetric image is to construct a volu-
metric image and analyze the volumetric data using
any clustering analysis technique. In general, a volu-
metric MR image can be constructed from the slices
of two dimensional images. In pur case, we adopt a
computationally least expensive way of obtaining a
volumetric image data which is stacking the slices of
two dimensional images using interpolation between
the original planes. The MR image given to us is a
composite MR image (dual-echo slice). The typical
dual-echo sequence involves 15 transverse imag-es
taken through the human brain; each slice is 7mm
thick and the separation between two consecu-tive
slices is 8.5 mm center to center on the Z-axis. There-
fore, each image is a series of 15 geometric slices of
images, consisting of SD and T2 image slices alternat-
ing one after another.

Since medical imaging modalities leave unimaged
space between adjacent slices (8.5 mm in our case) of
images, interpolation can be used to fill in the space
between the slices. Interslice voxel wvalues are
estimated by computing a linear average of the
density values found in pairs of opposing voxels in
the original slices. Such a volumetric image is shown
in Fig. 2.

Next phase is to derive the interaction parameters

Fig. 3. Sample Vector Field, o f(2))
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for defining potential function of MRF-Gibbs classif-
ier. As for the case of the two dimensional multis~
ignature image, Fig. 3 shows a part of the planer vec-
tor field 4 f{#)} of Fig. 1 showing the direc-tions in
which planer interaction parameters would be set
according to the description above. These par-
ameters serve to indicate the relative strength of a
neighboring site’s contribution to the classification
of the site under consideration.

In a higher dimensional case i.e., the volumetric
multisignature image, the vector field can be red-
uced easily. Fig. 4 shows the surface corresponding
to | dflze) - elf, ¢ ) |, for a fixed #, plotted as a
function of the parameters (), ¢ ) of the unit 3-
vector (0}, § )=(sin Ocos @ , sin 0, sind , cos ) fixed
at 2. It is a simple matter to locate the maxima of this
surface. Once computed, the 3-space directional vec-
tor field 2 f(#}) of a volumetric image is straightfor-
ward to construct. Fig. 5 shows such a vector field
with maximizing and minimizing vector plotted.

The final phase, MRF-Gibbs iteration, involves

the actual re-classifying of the pixels through a series
of re-classification iterations. The Gibbs classifier de-
veloped has been applied to two dimensional MRI
and volumetric MRI.

It is often necessary to generate a simulated data
set prior to applying the developed classification
algorithms to MRI, in order to evaluate the perform-
ance of the classifier, ¢specially when we have no
known class map information of the MRI. Therefore,
we can generate multivariate synthetic images and
evaluate the performance of the classifier against the
test images.

The synthetic image which is illustrated in Fig. 6
(a) has four different distribution and each distri-
bution is assigned to each quadrant of the image.
The distribution of each quadrant of the image
(numbered 1 to 4 from the left lower conner working
counter clockwise) is normally distributed with the
means M1=(60, 50}, M2=(130, 120), M3=(220, 190),

M4=(290, 270) and the covariances g =& v 10000.

| Fig.4. | df(ee) - 0. ¢) |
Fig. 5. Sample 3D Vector Field, ,a[f(u]]

T Fig. 6. (a) A Multivariate Synthetic
Image (b) Cluster Distribution of Syn-
thetic Image
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As illustrated in Fig. 6(b) the natural groups of each
distribution of the quadrant is overlapped each
other and we consider each natural group as a clus-
ter.

Fig. 7 shows various classification results based on
context-free classification along with MRF-Gibbs
classification. From the results of classification
(Table 1—4) the error rate of 1st order MRE-Gibbs
classification is much smaller (0.0045) than the
results of context-free classification such as K-means
classification, maximum likelihood estimation and
Euclidean distance/Maximum likelihood classifi-

Table 1. Cluster Allocation to each Quadrant For K-Nearest
Means Classification of Synthetic Image

cation with error rates 0.075, 0.0723 and 0.0701 re-
spectively.

Classification

In the classification of a two dimensional MR im-
age we performed context free classification i.e.,
maximum likelihood and minimum distance classifi-
cation along with Gibbs classification. The class
maps of such classification are shown in Fig. 8. Much
of noise in the class maps based on context free
classification are removed when we use Gibbs clas-

Table 2. Cluster Allocation to each Quadrant For Maximum
Likelihood Estimation of Synthetic Image

Quadrant Criuster 1 Cluster2 Cluster 3 Clusterri
1 15021 1363 0 0
2 925 14808 651 0
3 0 1064 14959 361
4 0 0 557 15827

Quadrant Cluster} Cluster 2 Cluster 3  Cluster 4
1 14981 1403 0 0
2 636 15201 547 4]
3 0 634 15018 732
4 0 0 797 15587

. Fig. 7. Classification Results of Syn-
thetic Image:(a) Maximum Likeli-
hood Estimation, (b} Buclidean Dis-
tance/Maximum Likelihood Classifi-
cation, {¢) 2nd Order Gibbs Classifi-
cation, (d) 1st Order Gibbs Classifi-
cation.
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classifier. Finally, Fig. 9 shows the Gibbs classifi-
cation maps for partial volume of midbrain images
reconstructed.

Discussion

This paper introduces MRE-Gibbs classifier using
a line model for multi-spectral, and multidimension-
al images, i.e, volumetric multisignature Magnetic
Resonance images. For this purpose, we expanded
the domain of image classification from conventional
two dimensional plane to three dimensional space.
Then, a three dimensional Bayesian model is con-
structed based on the MRF-GRF stochastic model.
Finally, a relaxation and annealing algorithm was
used to obtain three dimensional MAP estimates of

the volumetric multisignature images. In this paper,
we have described the role of the total differential of
a multisignature image in constructing a line model
for such images, and in the setting of interaction par-

ameters for an MRE-Gibbs classifier.
In practices, to lessen the computational burden

Takle 3. Cluster Allocation to each Quadrant For Maximum
Likelihood Classification with Euclidean Distance Cluster-
ing Criteria

Quadrant Clusterl Cluster2 Cluster3 Cluster 4
1 15382 1002 0 0
2 878 14900 605 O
3 0 577 15009 798
4 0 0 749 15635

Table 4. Cluster Allocation to each Quadrant For 1st Order
MREF-Gibbs

Quadrant Cluster1l Cluster2 Cluster3 Cluster4
1 16338 46 0 0
2 73 16282 29 0
3 0 28 16282 74
4 0 0 26 16358

Fig. 8. a. A multi-Echo Magnetic Res-
onance Image.

b. Result of maximum likelihood clas-
sification.

€. Result of minimum distance classi-
fication (d) Result of Gibbs ¢lassifi-
cation.
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in the simulated annealing algorithm, we developed
a parallel algorithm which ran on 12 processor Sparc
Center 2000 system. Compared to context free classi-
fication, MRF-Gibbs classification performed better
in homogeneous and along boundaries since contex-
tual information is used during the classification. In
evaluating the relative performance of the classifiers,
we have used the subjective analysis of professional
clinical scientists. The classification results will pro-
vide the clinically important data to analyze the ab-
normal tissue in the human brain. Moreover, the
class maps generated from the volumetric image will
allow us to visualize specific three dimensional tissue
objects in the brain.

~hlemosadlyohnre . X]| T s02.4if — ~tlemos/MLvolume o moaky — ~AanosiMLvalme. - x| Fig. 9. Gibbs Classification

Results of a Reconstructed
Volumetric MRI
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