KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.4
/
pp.1080-1099
/
2023
Digital healthcare combined with telemedicine services in the form of convergence with digital technology and AI is developing rapidly. Digital healthcare research is being conducted on many conditions including shock. However, the causes of shock are diverse, and the treatment is very complicated, requiring a high level of medical knowledge. In this paper, we propose a shock detection method based on the correlation between shock and data extracted from hemodynamic monitoring equipment. From the various parameters expressed by this equipment, four parameters closely related to patient shock were used as the input data for a machine learning model in order to detect the shock. Using the four parameters as input data, that is, feature values, a random forest-based ensemble machine learning model was constructed. The value of the mean arterial pressure was used as the correct answer value, the so called label value, to detect the patient's shock state. The performance was then compared with the decision tree and logistic regression model using a confusion matrix. The average accuracy of the random forest model was 92.80%, which shows superior performance compared to other models. We look forward to our work playing a role in helping medical staff by making recommendations for the diagnosis and treatment of complex and difficult cases of shock.
Knowledge of minimum horizontal stress (Shmin) is a significant step in determining full stress tensor. It provides crucial information for the production of sand, hydraulic fracturing, determination of safe mud weight window, reservoir production behavior, and wellbore stability. Calculating the Shmin using indirect methods has been proved to be awkward because a lot of data are required in all of these models. Also, direct techniques such as hydraulic fracturing are costly and time-consuming. To figure these problems out, this work aims to apply the long-short-term memory (LSTM) algorithm to Shmin time-series prediction. 13956 datasets obtained from an oil well logging operation were applied in the models. 80% of the data were used for training, and 20% of the data were used for testing. In order to achieve the maximum accuracy of the LSTM model, its hyper-parameters were optimized significantly. Through different statistical indices, the LSTM model's performance was compared with with other machine learning methods. Finally, the optimized LSTM model was recommended for Shmin prediction in the well logging operation.
In many domains, lack of data inhibits adoption of advanced machine learning models. Recently, Few-Shot Learning (FSL) has been actively studied to tackle this problem. Utilizing prior knowledge obtained through observations on related domains, FSL achieved significant performance with only a few samples. In this paper, we present a survey on FSL in terms of data augmentation, embedding and metric learning, and meta-learning. In addition to interesting researches, we also introduce major benchmark datasets. FSL is widely adopted in various domains, but we focus on image analysis in this paper.
LUCAS VERONEZ GOULART FERREIRA;LAXMI RATHOUR;DEVIKA DABKE;FABIO ROBERTO CHAVARETTE;VISHNU NARAYAN MISHRA
Journal of applied mathematics & informatics
/
v.41
no.6
/
pp.1257-1274
/
2023
Rotating machines heavily rely on an intricate network of interconnected sub-components, with bearing failures accounting for a substantial proportion (40% to 90%) of all such failures. To address this issue, intelligent algorithms have been developed to evaluate vibrational signals and accurately detect faults, thereby reducing the reliance on expert knowledge and lowering maintenance costs. Within the field of machine learning, Artificial Immune Systems (AIS) have exhibited notable potential, with applications ranging from malware detection in computer systems to fault detection in bearings, which is the primary focus of this study. In pursuit of this objective, we propose a novel procedure for detecting novel instances of anomalies in varying operating conditions, utilizing only the signals derived from the healthy state of the analyzed machine. Our approach incorporates AIS augmented by Dynamic Time Warping (DTW). The experimental outcomes demonstrate that the AIS-DTW method yields a considerable improvement in anomaly detection rates (up to 53.83%) compared to the conventional AIS. In summary, our findings indicate that our method represents a significant advancement in enhancing the resilience of AIS-based novelty detection, thereby bolstering the reliability of rotating machines and reducing the need for expertise in bearing fault detection.
The social consciousness on fake reviews has triggered researchers to suggest ways to cope with them by analyzing contents of fake reviews or finding ways to discover them by means of structural characteristics of them. This research tried to collect data from blog posts in Naver and detect habitual patterns users use unconsciously by variables extracted from blogs and blog posts by a machine learning model and wanted to use the technique in predicting fake reviews. Data analysis showed that there was a very high relationship between the number of all the posts registered in the blog of the writer of the related writing and the date when it was registered. And, it was found that, as model to detect advertising reviews, Random Forest is the most suitable. If a review is predicted to be an advertising one by the model suggested in this research, it is very likely that it is fake review, and that it violates the guidelines on investigation into markings and advertising regarding recommendation and guarantee in the Law of Marking and Advertising. The fact that, instead of using analysis of morphemes in contents of writings, this research adopts behavior analysis of the writer, and, based on such an approach, collects characteristic data of blogs and blog posts not by manual works, but by automated system, and discerns whether a certain writing is advertising or not is expected to have positive effects on improving efficiency and effectiveness in detecting fake reviews.
불완전한 계획 영역 이론은 오류 영역(noisy domain)에서 하나의 상태에 상반된 연산자들이 적용되는 불일치성 문제를 야기할 수 있다. 이 문제를 해결하기 위해서 본 논문은 상태를 기술하기 위해 다치 논리를 도입하여 제어지식으로서의 부정적 선행조건을 학습하는 새로운 방법을 제안한다. 기계에는 알려지지 않은 이러한 제어지식이 인간에게는 반대개념으로 잠재적으로 사용되고 있다. 이러한 잠재된 개념을 학습하기 위해 본 논문은 반대 연산자들로 구성된 사이클을 영역이론으로부터 기계적으로 생성하고, 이 연산자들에 대한 실험을 통해 반대 리터럴(literal)들을 추출한다. 학습된 규칙은 불일치성을 방지하면서 동시에 중복된 선행조건을 제거하여 연산자를 단순화시킬 수 있다.Abstract An incomplete planning domain theory can cause an inconsistency problem in a noisy domain, allowing two opposite operators to be applied to a state. To solve the problem, we present a novel method to learn a negative precondition as control knowledge by introducing a three-valued logic for state description. However, even though the control knowledge is unknown to a machine, it is implicitly known as opposite concept to a human. To learn the implicit concept, we mechanically generate a cycle composed of opposite operators from a domain theory and extract opposite literals through experimenting the operators. A learned rule can simplify the operator by removing a redundant precondition while preventing inconsistency.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.14
no.9
/
pp.3870-3884
/
2020
The proposed framework of Four Layer Robust Storage in Cloud (FLRSC) architecture involves host server, local host and edge devices in addition to Virtual Machine Monitoring (VMM). The goal is to protect the privacy of stored data at edge devices. The computational intelligence (CI) part of our algorithm distributes blocks of data to three different layers by partially encoded and forwarded for decoding to the next layer using hash and greed Solomon algorithms. VMM monitoring uses snapshot algorithm to detect intrusion. The proposed system is compared with Tiang Wang method to validate efficiency of data transfer with security. Hence, security is proven against the indexed efficiency. It is an important study to integrate communication between local host software and nearer edge devices through different channels by verifying snapshot using lamport mechanism to ensure integrity and security at software level thereby reducing the latency. It also provides thorough knowledge and understanding about data communication at software level with VMM. The performance evaluation and feasibility study of security in FLRSC against three-layered approach is proven over 232 blocks of data with 98% accuracy. Practical implications and contributions to the growing knowledge base are highlighted along with directions for further research.
The task of classification permeates all walks of life, from business and economics to science and public policy. In this context, nonlinear techniques from artificial intelligence have often proven to be more effective than the methods of classical statistics. The objective of knowledge discovery and data mining is to support decision making through the effective use of information. The automated approach to knowledge discovery is especially useful when dealing with large data sets or complex relationships. For many applications, automated software may find subtle patterns which escape the notice of manual analysis, or whose complexity exceeds the cognitive capabilities of humans. This paper explores the utility of a collaborative learning approach involving integrated models in the preprocessing and postprocessing stages. For instance, a genetic algorithm effects feature-weight optimization in a preprocessing module. Moreover, an inductive tree, artificial neural network (ANN), and k-nearest neighbor (kNN) techniques serve as postprocessing modules. More specifically, the postprocessors act as second0order classifiers which determine the best first-order classifier on a case-by-case basis. In addition to the second-order models, a voting scheme is investigated as a simple, but efficient, postprocessing model. The first-order models consist of statistical and machine learning models such as logistic regression (logit), multivariate discriminant analysis (MDA), ANN, and kNN. The genetic algorithm, inductive decision tree, and voting scheme act as kernel modules for collaborative learning. These ideas are explored against the background of a practical application relating to financial fraud management which exemplifies a binary classification problem.
The Transactions of the Korea Information Processing Society
/
v.3
no.7
/
pp.1773-1780
/
1996
KBANN (knowledge-based artificial neural network) combining the symbolic approach and the numerical approach has been shown to be more effective than other machine learning models. However KBANN doesn't have the theory refinement ability because the topology of network can't be altered dynamically. Although TopGen was proposed to extend the ability of KABNN in this respect, it also had some defects due to the link-ing of hidden nodes to input nodes and the use of beam search. The algorithm which could solve this TopGen's defects, by adding the hidden nodes linked to next layer nodes and using hill-climbing search with backtracking, is designed.
Journal of Korean Institute of Industrial Engineers
/
v.16
no.2
/
pp.135-147
/
1990
A nuclear power plant can be viewed as a large complex man-machine system where high system reliability is obtained by ensuring that sub-systems are designed to operate at a very high level of performance. The chance of severe accident involving at least partial core-melt is very low but once it happens the consequence is very catastrophic. The prediction of risk in low probability, high-risk incidents must be examined in the contest of general engineering knowledge and operational experience. Engineering knowledge forms part of the prior information that must be quantified and then updated by statistical evidence gathered from operational experience. Recently, Bayesian procedures have been used to estimate rate of accident and to predict future risks. The Bayesian procedure has advantages in that it efficiently incorporates experts opinions and, if properly applied, it adaptively updates the model parameters such as the rate or probability of accidents. But at the same time it has the disadvantages of computational complexity. The predictive distribution for the time to next incident can not always be expected to end up with a nice closed form even with conjugate priors. Thus we often encounter a numerical integration problem with high dimensions to obtain a predictive distribution, which is practically unsolvable for a model that involves many parameters. In order to circumvent this difficulty, we propose a method of approximation that essentially breaks down a problem involving many integrations into several repetitive steps so that each step involves only a small number of integrations.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.