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Abstract

The task of classification permeates all walks of life, from
business and economics to science and public policy. In this context,
nonlinear techniques from artificial intelligence have often proven to
be more effective than the methods of classical statistics.

The objective of kmowledge discovery and data mining is to
support decision making through the effective use of information. The
automated approach to knowledge discovery is especially useful when
dealing with large data sets or complex relationships. For many
applications, automated software may find subtle patterns which
escape the notice of manual analysis, or whose complexity exceeds
the cognitive capabilities of humans.

This paper explores the utility of a collaborative learning approach
involving integrated models in the preprocessing and postprocessing
stages. For instance, a genetic algorithm effects feature-weight
optimization in a preprocessing module. Moreover, an inductive tree,
artificial neural network (ANN), and k-nearest neighbor (kNN) techniques
serve as postprocessing modules. More specifically, the postprocessors act
as second-order classifiers which determine the best first-order classifier

on a case-by-case basis.
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In addition to the second-order models, a voting scheme is
investigated as a simple, but efficient, postprocessing model. The
first-order models consist of statistical and machine learning models such
as logistic regression (logit), multivariate discriminant analysis (MDA),
ANN, and kNN. The genetic algorithm, inductive decision tree, and
voting scheme act as kernel modules for collaborative learning. These
ideas are explored against the background of a practical application
relating to financial fraud management which exemplifies a binary
classification problem.

Key words: Collaborative learning, data mining, feature weighting,
classification, fraud management

1. INTRODUCTION

1.1 Purpose

The objective of knowledge discovery and data mining (KDD) is to support
decision making through the effective use of information. The practical aspect of
KDD lies in the development of learning software to discover patterns, trends,
or relations in databases [11].

The automated approach to knowledge discovery is especially useful when
dealing with large data sets or complex relationships. For many applications,
automated software may find subtle patterns which escape the notice of manual
analysis, or whose complexity exceeds the cognitive capabilities of humans.
Secondly, software for data mining may ensure the practicality of analyzing
large data sets which would require an unjustifiable amount of manual effort.
Lastly, automated learning tools may monitor complex environments such as
production requirements on a continuous basis, updating their knowledge base
immediately with the outbreak of new trends.

This paper explores the utility of an integrated approach relating to
collaborative learning. The collaboration involves learning modules in the

preprocessing and postprocessing stages in addition to the kernel model which
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serves as the foundation of the learning process. The approach is compared
against individual techniques relating to statistical and machine learning models
including logistic regression  (logit), multivariate discriminant analysis (MDA),
artificial neural network (ANN), k-nearest neighbor (kNN). The ideas are
explored against the background of a practical application relating to financial
fraud management in providing credit card services.

1.2 Background

Context. The past few decades have witnessed increasing interest in the
development of software for automated learning. The tools have been applied
widely to practical domains bespecially since the late 1980s.

To date, practical applications have tended to utilize single techniques in
isolation. However, each tool has its advantages and drawbacks. For this reason,
a collaborative learning approach to KDD offers the potential to take advantage
of the strengths of various techniques while bypassing the limitations of each
methodology.

Leamning is a useful capability for dealing with unknown factors in current
or future activities. One way to categorize learning systems takes the form of
explicit versus implicit representation of knowledge. Explicit knowledge
representation refers to the encoding of domain knowledge in terms and
concepts readily comprehensible to the user. Examples of explicit representation
lie in the Eurisko program [32] for discovering new concepts, or the learning
classifier approach [14]. Explicit knowledge may be declarative, as in the
statement of facts, or procedural, as in the encoding of instructions.

In contrast, implicit techniques refer to the generation of appropriate output
based on input stimuli, without the direct representation of knowledge for
processing the information. The implicit approach is reflected in neural network
models, where information processing know-how 1is encoded in terms of
multiplicative weights at nodes and on the arcs between pairs of nodes. A key
advantage of the neural approach is that the system itself performs the bulk of
the work for establishing the implicit knowledge. A second advantage lies in
robustness, in that- a neural network will degrade gracefully rather than
catastrophically when its structure is modified in minor ways.
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Another collaborative learning approach is to employ learning models in
conjunction with statistical techniques. The incorporation of statistical tools
including factor analysis, principal components analysis, and other multivariate
methods as a preprocessor for the compaction of input dimensions enhances
performances in certain situations while having little or no effect in others.
Previous work on the impact of statistical methods has been reported in the
literature [16, 22, 23, 31]. The current study investigated the effects of logistic
regression and multivariate discriminant analysis in conjunction with machine
learning techniques.

Explicit versus implicit models. A neural network offers many
advantages such as robustness and graceful degradation .[15]. However, most
neural nets suffer from a number of limitations such as the need for long
learning times. Another drawback lies in the implicit nature of the acquired
knowledge, which cannot be explicitly communicated to a human decision maker
{18, 191.

At lower levels of representation in the human brain, data is encoded in the
form of voltage differences and structural changes, both mediated by chemical
action. Yet, at some level of awareness, we are conscious of aggregate
concepts, relationships, and abstractions. Hence a practical system should
effectively couple the implicit and explicit forms of representing knowledge [44].
The framework and concepts for learning systems have been tailored to
applications in various domains. In controlling dynamic systems, an effective
approach is to implement a multistrategy scheme incorporating techniques such
as nonlinear control, real-time sensing, and adaptive techniques [7, 8).

People take account of observations and utilize them for future decision
making. Often the extrapolation to new situations is ad hoc, as in modifying a
tactical plan from a card game to stock market investment. In other cases, the
extrapolation is more formal and takes the form of inductive propositions such
as formulas, principles, laws, or rules of thumb.

One pertinent methodology is found in case based reasoning (CBR). The
key advantage of CBR lies in its affinity to human learning and the attendant
ease of enhancing system performance. The knowledge in a particular domain

can be stored in formats which are conventional for that domain. For instance,
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a knowledge base for failures in a communication network can store the
information about previous malfunctions in the format used by human
troubleshooters. This is in contrast to other knowledge level representations
such as production rules, in which the system developer is required to extricate
the pertinent decision rules used by a human.

The CBR methodology can be effective even if the knowledge base is
imperfect. Certain techniques of automated learning, such as explanation-based
learning, work well only if a strong domain theory exists. In contrast, CBR
can use many examples to overcome the gaps in a weak domain theory while
still taking advantage of the domain theory [37]. CBR can also be used when
the descriptions of the cases, as well as the domain theory, are incomplete [47].
A further advantage of CBR is the relative ease of combining techniques with
other approaches. An example of such compatibility is a system which uses
case reasoning to solve problems whenever possible; otherwise it resorts to
heuristics to decompose a problem into a simple one. The attempt to modify old
solutions to the current context must take into account not only the basic
features of the cases, but the relationships among their constituent parts. The
mapping of relationships from one case to another represents the task of
analogy.

To illustrate, consider a novel control problem which largely resembles a
prior one in the case base. The use of the previous solution, however, would
lead to sluggish response in the current application. This limitation could be
addressed by introducing an extra component based on derivative control. But
the revised design leads to a spasmodic control signal due to noise in the input
signal. The latter difficulty can be resolved in various ways, such as inserting
a moving-average smoothing unit immediately before the derivative controller.
In this way, a process of iterative refinement can be employed to adapt an old
solution to the new problem context.

A learning system, to be effective, must have the ability to draw on
knowledge from diverse sources. The diversity can take the form of different
formats for encoding knowledge as well as muitiple modules within a single
representation format [18]. The synergism of diverse formats is exemplified by
the integration of production rules with the output of neural networks, or the
interplay of case information with rules of thumb. The second major category
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of integration relates to the enhancement of performance through the fusion of
new information with the old in an existing knowledge base. To illustrate the
process of learning through knowledge integration, consider the diagnosis of
failure in a sensor device. The causal relationships among the factors behind
the problem may be represented in the form of a fault tree. The collective
causal tree reflects an expansion of the reasoning capability of the system,
including the ability to present the integrated knowledge to a human questioner
[24]. In this way a systematic base of failure factors can be constructed from
diverse cases without human intervention.

The comprehensive framework for learning systems can be adapted to the
tasks of decision making. A global architecture for a predictive system is
presented in {Figure-4]. Information from the environment is acquired through
sensors and conveyed to a feature extractor as well as a human monitor. The
input streams are processed by the predictive system in conjunction with
dynamic system objectives and user decisions. The actions from the system,
implemented through the activators, modify the external environment - such as
the acquisition of a sensor reading - or the internal environment - such as the
invocation of a contingency plan.

Induction refers to the generation of rules or the classification of objects
through decision trees. The methodology generates new knowledge in the
explicit form of rules or trees [39, 40]. However, the methodology can be

cumbersome to use and has not been deployed as widely as it deserves.

Lazy learning algorithms. The class of lazy learning algorithms (LLAs)
involves  techniques which store precedent cases in memory with little or no
preprocessing, then retrieve them on a selective basics as required by a problem
situation [35, 50]. Perhaps a more accurate term than lazy learning would be
delayed learning or real-time processing. LLLAs have their roots in the nearest
neighbor (NN) retrieval algorithms used in pattern recognition [4]. Other
techniques in this category include the following approaches: k-nearest neighbor
(kNN), case-based reasoning (CBR), memory-based reasoning, and
instance-based learning.

Since the late 1980s, extensive research has been conducted on techniques

for processing precedent cases including methods for indexing, retrieving, and
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adaptation to new cases [1, 27, 30, 43, 49]. This collective framework of
techniques is known as case-based reasoning. Within the framework of CBR,
the NN algorithm is the simplest version. In particular, the NN procedure
retrieves the single precedent case in the database which most closely
resembles the target problem at hand.

A generalization of NN is the k-nearest neighbor (kNN) algorithm, which
calls the k closest precedents [4, 5, 34, 46, 50]. The NN and kNN algorithms
are often reasonable and adequate methods for retrieving precedents when the
features or attributes of the cases are orderly : no irrelevant or redundant
features, no inter-feature correlation, and no noise [29, 38, 50].

For a lazy learning algorithm, the selection of appropriate cases relies on a
similarity metric which takes into account the distance between pairs of cases
in their state space of features. Consequently, the performance of the metric and
the weighting of features are keys to the reasoning process [38]. In contrast to
most other procedures, CBR is effective for applications involving weak domain
knowledge; that is, complex fields where human expertise is unavailable or even
nonexistent. In such situations, the need for automatic feature selection and
weight optimization is particularly acute.

CBR may be regarded as a hallmark of the class of lazy learning
algorithms. In particular, a KNN procedure represents a simplified CBR approach
in which little or no processing is performed on the retrieved cases other than a
weighted combination of the precedents.

Genetic Algorithms. A genetic algorithm (GA) is a procedure modeled
after the processes of genetic evolution and population dynamics in natural
selection. In essence, the procedure selects highly fit individuals and their
chromosomes at random to yield offspring; within the new population, the unfit
are eliminated and the fittest survive to contribute genetic material to the
subsequent generation.

The seminal work on genetic algorithms dates from the mid-1970s [14].
Most applications of GAs involve the optimization of a performance function
based on a domain of either continuous or discrete variables. Classical methods
of optimization rely on the improvement of a single trajectory toward an
optimum by computing the gradient at each step. In contrast, a GA promotes
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several solutions in parallel, and modifies them in a random fashion to obtain
the subsequent iteration toward the optimum. The inherent parallelism and the
advantage of directed random search permits the use of genetic algorithms for
addressing computationally difficult problems even in the NP-hard category [13,
14]. In a GA, a chromosome is a sequence of symbols which represents an
individual or candidate solution to the problem at hand. Often theses symbols
represent numbers; the numbers in particular might be the binary digits 0 and
1 . The collection of individuals at each iteration is called the population. The
optimization process at each iteration or generation involves selection followed
by crossover and/or mutation.

More specifically, the individuals in a population are evaluated through a
fitness function which measures their relative worth. The fittest individuals are
then chosen for further processing. The concept of inheritance is implemented
by selecting two fit individuals and crossing or mixing their chromosomes: this
crossover operation involves slicing their chromosomes at random locations and
recombining corresponding sections from previously distinct individuals. Another
way to effect variation in the subsequent population takes the form of mutation:
a random location is selected on a chromosome and its symbol is changed to
another feasible value at random.

A particular sequence of symbols for a chromosome is called a genotype.
At times two different genotypes may exhibit the same appearance and
behavior; in that case they constitute a single phenotype. For instance, an
offspring may inherit two genes for brown hair from its parents, thereby
exhibiting brown hair. Its cousin may inherit a gene for black hair and another
for blond, and thereby end up with brown hair as well. The two offspring have
different genotypes but the same phenotype in the context of hair color.

On occasion, a population may reach a dead end in evolutionary terms.
With insufficient variety in the common gene pool, fhe evolutionary process
becomes congested and the population can attain only a locally optimal
solution. To circumvent this possibility, mutation introduces a new aspect at
random, thereby allowing the population to escape the local extremum and
search other terrains for a global optimum. The rate of mutation must be high
enough to avoid long periods of stagnation in the evolutionary process, but low
enough to ensure a measure of stability; that is, providing the population with a
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chance to reach the local optimum before leaping into distant terrain.

The appropriate type and extent of mutation as well as crossover, will of
course depend on the problem domain. Since the performance function is
generally unknown in advance, the optimal configuration of the fitness function
as well as the nature of crossover and mutation may be regarded as design
issues which must be informed by detailed knowledge of the application area.

The basic structure of a GA is as follows, where P(t)denotes a population

of candidate solutions to a given problem at generation t.

t=0;
initialize P(t);
evaluate P(t);
while not (termination condition)
begin
t=t+ 1
reproduce P(t) from P(t -1);
recombine P(t);
evaluate P(t);
end;

Hybrid learning architectures. A hybrid or multistrategy approach to
learning involves the interaction of two or more data mining techniques. One
way to classify multistrategy learning lies in the following typology.

a. Staging. In this architecture, the output of one module enters a second
module. The flow of information is unilateral: from the first module to
the second.

b. Nesting. In this configuration, one technique is subsumed within another
approach. For instance, a genetic algorithm serves to optimize the
weights used in selecting precedents in case based reasoning.

c. Collaboration. Two modules exchange information in a bilateral fashion.
Where the collaborative architecture contains 3 or more modules,

information flows may arise in mutilateral fashion.
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The hybrid architectures are depicted in [Figure-1].

A staged architecture contains two or more modules. In that case, one of
the modules may be viewed as the core or kernel component. The module prior
to the kernel may then be regarded as the preprocessing unit. Similarly, the
module lying posterior to the kernel can be regarded as a postprocessor. The
arrangement is depicted in [Figure-2).

Module 1 »| Module2 | pCQuiput D
(a) Staging.
Module 2
- ’ Module 1 -
(b) Nesting or embedding.
Module | Module 2
(c) Collaboration.

[Figure-1] A classification of hybrid or multistrategy architectures. Each
module may be elementary or composite. For instance, Module
1 in a staged architecture may itself contain a nested module
or even another staged architecture.

182 « Journal of Information Technology Application



(A48 delgriold & AT EX a7 AA)

Input Module 1 | ——p Module2 ——| Module 3

Preprocessor Kernet

[Figure-2] Preprocessing and postprocessing modules. In a staged
architecture with multiple modules, one of the components may
be regarded as the main or kernel module. The component
prior to the kernel, if one exists, may be regarded as a
preprocessor. Similarly, the subsequent module may be viewed
as a postprocessor.

Second-order learning. Second-order learning may be viewed as an
example of a staged architecture. This approach refers to the selection of an
elementary model based on its anticipated performance.l)

Second-order learning is a multistrategy approach to knowledge discovery.
The first stage of the integrated architecture involves a basic set of learning
models. The outputs from these first-order models enter a second stage, which
determines which of the first~order models to use in each particular situation
(typically specified by an input vector) [20]. The general procedure is depicted
in [Figure-3].

In this paper, the elementary techniques representing first-order learning
relate to statistical and machine learning techniques. Subsequently the second
stage employs inductive reasoning, ANN and kNN to determine the conditions
under which a particular model performs better than the other. Then the
forecast from the superior method is selected on a case-by-case basis to
determine the output of the overall system. In other words, the second stage
serves as a metalevel predictive system to discern which of the elementary

1) A basic or elementary model refers to one which utilizes only the input data. In other
words, it is a "first~order” model. On the other hand, a second order model utilizes
the output of a basic mode] in conjunction with the input data.
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modules (ANN, kNN or Logit) will perform better.

In training and testing a second-order model, the dataset must be
partitioned into three segments, [Figure-4] illustrates the approach when the
first order modules consist of ANN and kNN, while the second-order model
involves the C4.5 induction algorithm. The first segment (denoted “A” in the
figure) is used to train the first~order models. The second segment ( “B” )
serves to test the first-order models, and to use the results to train the
second-order model. Finally, the third segment ( “C” ) may be used to test
each of the first- and second-order models.

First-order stage
Model1 |
g . — \ Resuit
g, e Second-c:rder_>0utput
b i model
a e :
2 .
o« Result

[Figure-3] Schematic of the second-order learning architecture.
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S (A ANN kNN
egmen training || training
ANN kNN C4.5
+ iy
Segment B testing testing training
S e ANN kNN C4.5
egmen testing testing testing

[Figure-4] Definition of partitioning of data sets to investigate the
second-order learning.

Inductive reasoning. The C45 program is an inductive algorithm which
produces a decision tree [39]). This procedure utilizes most of the concepts and
tools employed by its predecessor, the ID3 algorithm [40). The basic concept
involves the use of the entropy metric from information theory to yield efficient
decision trees. In addition, C4.5 employs a “split information” metric in order to
avoid strong bias. A metric called a “gain ratio” is also used to construct
decision trees of greater accuracy. Moreover C4.5 has other advantages
compared to the ID3 algorithm, such as the ability handle continuous—valued
attributes, and the generation of prior estimates of predictive accuracy.

Inverse of correlated errors. In practical systems involving competent
models, it is common for two or more models to agree on the correct response.
However, it is relatively unusual to find multiple models converging on the
same incorrect result.

In nonlinear models, there is in general no guarantee of discovering the
globally optimal model. On top of this theoretical limitation, there are the very
.practical constraints of limited datasets and processing time. For these reasons,
it seems plausible to infer that some features - unknown to the human decision
maker-of the dataset have led multiple models astray. Consequently, if cases
from the untested dataset also lead the models down the same path in a
consistent way, then this information is useful knowledge.

The collaborative model employed in this paper therefore utilizes the notion
of correlated errors: if multiple models err in the same way on a particular
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case, then the correct response must lie in the complement among the potential
set of responses.

-In the context of binary classification, the result is immediate. For instance,
if multiple models yield a false positive in a particular type of situation, then
the correct response should be a negative. In a sense, the reversal of a
response on correlated errors represents a type of “negative voting”.

Collaborative learning. Collaborétive learning might be viewed as a
multilateral version of second-order learning. In this paper, the basic techniques
representing first-order learning related to logit, MDA, kNN and ANN. In
addition, inductive reasoning, ANN, and kNN were used to select among the
predictions from the elementary learning techniques

The collaborative learning model employed the method of error reversal on
correlated mistakes. More specifically, if two out of the former elementary
models produce correlated errors, the converse of their response is used for
further analysis. The second-order learning stage served as a metalevel
prediction system to determine the conditions under which one or more primary
modules outperformed the others. Then the prediction from the superior method
was selected on a case-by-case basis to determine the output of the overall
system.

A genetic algorithm serves as a preprocessor by optimizing the weights of
features for selecting cases to be used by the kNN classifier. A kNN model
which employs the GA as a preprocessor is labeled GA-kNN. Similarly, an
ANN model with a GA preprocessor is denoted GA-ANN. Since a GA module
requires significant processing time, its fitness function ought to be a lazy-style
learner similar to kNN. In this study, the GA-ANN model adapted kNN as the
fitness function for the ANN classifier: much like previous work where kNN
was used to approximate the counter propagation neural network [2].
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Unpredictable Region Unpredictable Region Unpredictable Region

(|| €

[Figure-5]

(a) (® ‘ ()

Potential regions of competence corresponding to two distinct
classifiers. The symbol A denotes the region of competence for
model A; and B for model B. Intuitively, the performance of a
second-order learner should be the union of A and B. In
diagram (b), model A is a superset of B; consequently the
predictive performance of a second-order learner should not
exceed that of model A. For a second-order learner, the
situation in diagrams (a) and (c) are the most interesting. In
practical situations, fully disjoint regions as depicted diagram
(c) are not likely to occur. This study focused on second-order
learning for the situation in diagram (a).

Among the four first-order models, the correlation between the logit and
MDA models tended to be high (greater than 0.7). Since the predictive accuracy
of logit is higher than that of MDA, the techniques of ANN, kNN and logit
were used as voting modules. This voting strategy offered the advantages of
simplicity and speed.

2. COLLABORATIVE LEARNING IN THE
CLASSIFICATION TASK

2.1 GA as the Preprocessor

The goal of a collaborative learning approach is to combine two or more
learning techniques in a synergistic fashion. As in other hybrid architectures,
one of the components might involve a nested module. In particular, a genetic
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algorithm can be employed to optimize the weights in a lazy learning algorithm
[25].

The overall strategy for the optimization is depicted in [Figure-6]. In
addition, the procedure for encoding and decoding chromosomes for efficient
weight discovery is outlined in [Figure-7].

. . A. Representation
Initial feature-weight i

* 1. Encoding step
Gray coded representation for flexible change of
decoded representation.

Candidate iature-weight
E. g., 011 (0.3) —> 100 (0.4) all changes are needed

> GA Feature-Weighting B. Interpretation

¢ 1. Decoding step 1
. GrayToBinary transformation.
Fitness evaluation E g, 100> 111
(k-NN classifier) e

2. Decoding step 2
BinaryToDecimal interpretation.
New_value = decimal * constant.

eaxjnation congitia

Yes In this study, the range of feature-weights was

Optimized feature-weight [0,1.5] with 16 steps. E. g.,0.0,0.1,0.2,..,1.5

[Figure-6] schematic of a simple [Figure-7] Efficient feature-weight
feature-weighting representation and interpretation
strategy. in the form of a chromosome.

Motivation for a new performance metric. At first glance, an appropriate
metric for tasks in forecasting or classification lies in the hit rate: the
proportion of correct predictions. The hit rate has, in fact, been employed as the
standard measure of performance in the literature. Unfortunately, the hit rate by

itself suffers from the following limitations:

1. False validation of a local extremum as the global optimum. Even when a
procedures lies far from the global optimum, the metric can yield a high hit
rate even 100% for the particular test set at hand. Such misleading results
are especially likely to occur for small test sets. An example of false
validation is depicted in [Figure-8].
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2. Promotion of stagnation. As indicated in the previous section, the course of
optimization can lead to congestion or stagnation. In such situations only a
mutation is likely to deliver the system into virgin territory. However, in a
software simulation - as in nature - most mutations are likely to be
detrimental to the performance of an organism. This is true even if the
mutation eventually leadé to other adaptations which yield better performance
in subsequent generations. Consequently, the single metric of hit rate will
tend to block mutations and thereby reinforce stagnation in the evolutionary
process.

3 A standard trade-off in predictive tasks lies in accuracy versus cost. The
cost takes the form of processing time as well as data collection
requirements [6, 45, 51]. To minimize both varieties of cost, it is imperative
to weight features or attributes in an efficacious way [38].

The preceding discussion highlights the importance of designing a
performance metric which promote high accuracy as well as low cost. ‘

Specification of metrics. As a preliminary task toward developing an
appropriate fitness function, it is necessary to define an effective clustering
procedure for associating similar cases. To this end, we identified a metric of
distance or skew which would yield high differentiation among the clusters: in
other words, large gaps between clusters but small gaps among the cases
within a single cluster.

More specifically, the inter-target distance (TD) is defined as the distance
between two target or output vectors. In a similar way, the inter-source
distance (SD) is defined as the distance between two source or input vectors.
The skew (SK) is defined in terms of the aggregate difference in distance
between TD and SD for the entire training set (one training example is
compared against all the others).

In the case of a large (or small) value of TD, a large (or small) SD could
yield a small value for SK. A dataset with a low value of SK indicates good
classification performance. The motivation behind this policy is the assumption
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that "Distinct phenomena have dissimilar causes while similar phenomena have
similar causes”. One beneficial consequence of this policy lies in feature
reduction, which lowers the cost of data preprocessing.

The metrics of SD and TD between the i and jth cases are defined as:

m

SD,, = ;Wk(si,k—S,,,,)z ™, = [>T, -T,)

k=1

Further, the SK metric is defined as
P

SK=Z\[ (TD,, - SD, )’
i=l | j=1

for a continuous-valued target, or

SK =

PP P
i=1

Y'sSD, =Y. dSD,

y4
J=1 i=l j=1
for a discrete-valued target. Here the following notation is used:

n: number of input features

Wi weight of k" feature

Six: value of kK input feature in the i case

S;« value of k™ input feature in the j* case

m:. number of output features

Tix: value of K output feature in the i" case

Tk value of k™" output feature in the f” case

p’ total number of training cases

sSD;;: the value of SD;; when Tk is the same as Tk for all k
dSD;; the value of SD;; when Tix differs from Tjx for all k

Moreover, we adopted the concept of majority and minority developed by
Punch (Punch, et al. 1993).
Finally, the fitness function may be defined in the following way:

Fitness = ¢SK + AHP + 7(cMa / (cMi + 1))

where the following notation is used:
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HP: hit percent = (correctClassifiedCases / totalTrainingCases) * 100
cMa: the cardinality of majority cases in k neighbors

cMi. the cardinality of minority classes in k neighbors

o tunable parameter ranging from -0.1 to -0.001

A tunable parameter ranging from 1.0 to 5.0

7 tunable parameter ranging from 0.1 to 1.0

A comprehensive overview of the fitness function is depicted in [Figure-8].

(weight= 1) (weight = 1.4)

Feature 3 O O O Feature 3 00
O

L i d) Ounm.ii

A ’/CD (a.c, d) \ g O O

| A
o A?A A o gx\.

" Faature 2 (,, e.d) A A

(weight=1)
eature 1 Feature 1 = Feature 2
(weight=1) (weight = 0.0) (weight=0.7)
Initial state without feature-weighting. Final state with optimized feature weights.

[Figure-8] Example of an adaptive transformation of feature weights for
KNN through the reduction of a dimension and re-scaling of
axes. Here the number of neighbors is k=3. From the initial
state of 3 features, the weight of Feature 1 has been changed
to 0.0 (feature-selection effect) and the others to greater or
less than 1.0. The value of cMa changed from 2 to 3 and cMi
from 1 to 0. Moreover, SK was decreased sufficiently to yield
source-level homogeneity within the same class (logical input
vector (a, ¢, d) has been changed to (a, e, d) and (h, i, d) to
(h, i, j) in a different class). In both situations, it is possible to
obtain a hit rate of 1.0; however, the situation on the right is
closer to the optimal solution.

A: Input pattern
At Stored pattern with desired class

O: Stored pattern triggering misclassification
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2.2 Postprocessing approaches

According to the terminology depicted in [Figure-2], the second-order
learner and the voter act as hybrid postprocessing models. The detailed scheme
for second-order learning is presented in [Figure-9]. The model selector
identifies two appropriate models based on the correlation matrix for the four
models. The desired model is chosen on a case-by-case basis for the
second-order learner using Segment B of the dataset.

In contrast to the second-order learner, the voter is a simple postprocessing
model which bypasses the expense of a protracted training phase. The voter
utilizes the output of the ANN, Logit, and kNN modules to determine the
appropriate output according to a simple majority rule.

The basic configuration for the voting scheme is depicted in [Figure-10]. In
this architecture, a GA can serves as- a preprocessor to optimize the feature
weights for kNN.
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[Figure-9] A second-order architecture involving second-order

learning.
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[Figure-10] Collaborative architecture involving an optimizing prerocessor

and a voting postprocessor.
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3. EXPERIMENTAL STUDY

3.1 Data sets

For the experiments, we employed three data sets: two drawn from a

popular repository of data for machine learning, and one from a Korean firm.
The three data sets are described in [Table-1].

[Table-1] Descriptiori of data sets used in the experiments.

Size ,
Data set # of #o Description
Features | Classes
Seg- Seg- Seg-
ment A | ment B | ment C

Australian credit card

Aus-credit| 270 210 210 14 o | data for classifying
fraudulent transactions
(confidential)
German data for

Ger-credit 400 300 300 24 2 approving credit card
renewals (public).
Korean credit card

Kor-credit| 400 300 300 10 g | data for classifying
fraudulent transactions
(confidential).

UCI Machine Learning Repository. The first two datasets were selected

from the UCI machine learning repository. This resource contains datasets

which serve as standard yardsticks for evaluating algorithms developed by the

machine learning community. The applications we selected involved the realm of

finance, especially typical binary classification problem- financial fraud. The

information was compiled in concert with a multinational project sponsored by
the ESPRIT programme [9). The applications involved credit card approval
based on customer demographics and usage histories.
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3.2 Preprocessing, Implementation, and Experiments

To ensure a measure of consistency in the weights for employing LLAs,
each feature of each dataset was normalized into the unit interval [0, 1]. On the
other hand, the raw data were first standardized (into Z scores) for the ANN.
Moreover, missing data values were filled in robust fashion: to circumvent the
biased impact of outliers, the median value of each feature was used to replace
missing values.

The genetic algorithm used in this study was tailored after the Goldberg
model [13]). The fitness function employed relative weighting. In particular, a
weighted kNN classifier [35] was used to measure fitness in the training sample
space. More specifically, the weight vectors (individuals in a population)
produced by the GA were fed into the KNN module in calculating the weighted
distance. The ANN model was the standard backpropagation algorithm [41], but
with an enhancement called Quickprop to accelerate the learning process [10].

All code except for the statistical models was written in C++ on a Sun
UltraSparc Unix machine. The parameter settings for the GA were selected
largely as reported in the literature [2, 3, 13, 38, 51]. More specifically, the
parameter settings for each dataset were as follows. -

- Population size: 50~70

- Number of generations: 50~200
Probability of crossover: 0.5~0.7
Probability of mutation: 0.001 ~0.01
Probability of selection by ranking: 0.6

Probability of selection by roulette: 0.4

Crossover point: single point crossover

For the efficient and flexible representation of information, each chromosome
was a gray coded string for which the Hamming distance for each pair of
adjacent genes was equal to one. We adopted the single-point crossover
strategy while taking account of the interference from the two-point crossover
with gray code [26).

The number of nearest neighbors (k) used in kNN was selected through a
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five-fold cross-validation procedure. For this procedure, the value of k was
varied from 1 to the square root of the total number of training patterns [26].

As indicated earlier, the second-order model lay in the form of the C45
procedure. A sample output during a user interaction with the program is
displayed in [Figure-11]. For instance, the first couple of lines in the decision
tree is equivalent to the following rule: If ((x3 <= 0.205) and (x13 > 416)) then
KNN is the best first-order model. Here x3 and x13 denote particular features
-or attributes.

Simplified Decision Tree:
x3 <= 0.205 :
|  x13 > 416 : KNN (2.0/1.8)
| x13 <= 416 :
| x2 <= 1942 : ANNKNN (3.0/1.1)
| x2 > 1942 : INVERSE (8.0/3.5)
3> 0205 :
x8 <= 0 : ANNKNN (90.0/3.8)
x8 > 0:
x9 > 0 : ANNKNN (66.0/8.4)
x9 <= 0:
X7 > 7.415 : KNN (4.0/2.2)
X7 <= 7415 :
x2 <= 3958 :
| x5 <=5: KNN (2.0/1.8)
| x5>5:
| | x13 <= 40 : INVERSE (4.0/2.2)
| | x13 > 40 : ANNKNN (24.0/11.2)
x2 > 3958 :
|  x14 <= 14 : INVERSE (4.0/2.2)
|

|
I
X,
|
l
|
|
l
I
I
|
|
l
|
|
|
I x14 > 14 : ANN (3.0/1.1)

Tree saved
Evaluation on training data (210 items):
Before Pruning After Pruning

Size Errors Size Errors Estimate
49 14( 6.7%) 21 24(11.4%) (18.7%) <<
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Evaluation on test data (210 items):
Before Pruning After Pruning

Size Errors  Size Errors Estimate
49 62(29.5%) 21 57(27.1%) (187%) <<

(a b © (@@ <-classified as
2 6 3 (a): class ANN

4 13 (b): class KNN

3 145 8 (c): class ANNKNN
2 19 4 (d): class INVERSE

[Figure-11] Example of training and testing the second-order model
using C4.5.

During the experimental stage, five separate trials were conducted using
different partitions of the datasets into training and test segments. For instance,
the casebase of 690 records for the Australian application was partitioned
randomly into 270 cases for the training set and the remainder for the test
segment. The segmentation and use of the datasets is presented in [Figure-12).
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S/ tA ANN kNN Logit MDA GA-kNN GA-ANN \
cemen training | | training || training || training || training training
ANN kNN Logit C4.5 ANN,, kNN;,
Segment B testing [t testing testing — training training training
s tC ANN kNN Logit MDA GA-KNN GA-ANN
cgmen testing testing testing testing testing testing
C45 ANN;,, KNN,,
testing testing testing

ANN KNN Logit Voter
K testing |t | testing [+ | testing —> testing /

[Figure-12] Segmentation of data sets to investigate the effectiveness of

hybrid learners including GA preprocessing, second-order
learning (so), and voting.

3.3 Results

This study investigated the efficacy of nine hybrid models against the four
elementary models. The models are presented in [Table-2].

[Table-2] Three types of models used in this study

Elementary Hybl:id models Hybrid models with two classes
models with four (TCM)
classes(FCM)
ANN ANN®#") GA-ANN(*)
kNN KNN@#") TCM-A GA-KkNN(*)
Logit Voter(#)
R ANN®E)
MDA CASE) TCM-B KNN(#)
C45#)

* Preprocessing model
# postprocessing model
~ second-order model
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Among the nine hybrid models investigated in this study, the first three
involved second-order learners with four classes (FCM). These second-order
learners operated on the collective output of two elementary models A and B.
Hence there were four possible combinations or classes of predictions for the
second-order module: only A is correct; only B is right; both are correct; or
both are wrong.

Among the remaining six models, the first three models (TCM-A) were all
binary classifiers. Two of these latter models employed GA as a preprocessor,
whereas the third was a simple postprocessing voter.

The expected accuracy is 256% for the FCM and '50% for the TCM models.
Consequently the accuracy of a second-order learning model (FCM) cannot
exceed that of the first-order models.

If there were enough conflicting samples (only one of the two first-order
models is correct), it would be possible to construct a two-class second-order
classifier. On the other hand, it is very difficult to distinguish conflicting
patterns from noise. In this study, two-class classification for second-order
learning was not feasible because of the sparsity of conflicting patterns: if the
samples in this category were to be partitioned into three segments, there
would not be enough cases for a meaningful analysis.

An alternative approach to second-order learning with four classes lies in a
stepwise binary classification procedure such as ordinal pairwise partitioning
[28].

In the first stage, a second-order model determines whether the elementary
models are able or unable to correctly classify a case. The able class indicates
that at least one of the two first-order models can correctly classify, while the
class unable implies that neither can. The second step is invoked only for the
able cases from the first stage; the second step involves the identification of the
correct elementary model.

A data partition of three segments was used to validate the effectiveness of
hybrid learning models, the first partition (A) was designed for the training of
individual models, the second (B) for the training of collaborative learning
models including FCM, TCM-A and TCM-B, and finally the third (C) for the
evaluation of overall performance for each model.

The predictive accuracy of individual models on Segments B and C are
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summarized respectively in [Table-3] and [Table-4]. For the three application
domains, the overall performance of the elementary models was an average hit

rate of about 70 percent.

[Table-3] Performance of atomic models on Segment B with 2 classes

(fraud, nonfraud).

Data set Accuracy (%)

(# of patterns in Segment B; -
# of total pattems) ANN kNN (k) Loglt DA
Aus_credit (210; 690) 83.3 84.4 (5) 85.2 86.7
German_credit (300; 1000) 76.0 69.0 (15) 75.0 70.0
Korean_credit (300; 1000) 57.0 49.0 (7) 495 525
Average 721 675 69.9 69.7

[Table-4] Performance of atomic models on Segment C with 2 classes
(fraud, nonfraud)

Data set Accuracy (%)
(# of patterns in Segment C;
# of total patterns) ANN kNN Logit DA
Aus_credit (210; 690) 84.3 8338 876 86.7
German_credit (300; 1000) 770 72.0 76.0 70.0
Korean_credit (300; 1000) 55.0 51.3 50.0 53.0
Average 72.1 69.0 71.2 69.9

From this experiment it was difficult to determine whether the overall
predictive accuracy of the hybrid learning models is superior to that of the
individual models. The performance of all four-class second-order models
(FCM) were inferior to that of the solitary models. However, the two-class
collaborative learning models (TCM-A) outperformed the individuals.
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In [Table-5], the performance of the FCM models are shown in white cells
and the TCM-A models in shade. According to the last row, all the FCM
architectures yielded average hit rates of under 70%. The FCM models were all
bested by each TCM-A model.

Statistical tests for the differential performance among various pairs of
models is presented in [Table-6]. According to the table, the performance of the
FCM models (C4.5s0, kNNso and ANNso) tended to be inferior to the
individuals at a statistically significant level. However, the performance of the
TCM-A models (VOTER, GA-kNN and GA-ANN) was statistically superior on
most of the data sets.

[Table-5] Performance of the FCM models against TCM-A models on
Segment C. The results of the FCM models are in white
cells; TCM-A models are presented in shade. The subscript

" ”

so” denotes a second-order learner.
Accuracy(%)
Data Set Preprocessing model Postprocessing Model
GA-kNN | GA-ANN |C4.5 so| kNN so | ANN so| VOTER

Aus_credit 83.1 86.2 72.9 81.4 78.1 86.2
German_credit 78.0 76.3 51.7 65.3 58.3 78.7
Korean_credit 62.0 60.3 440 49.0 48.3 58.0

Average 76.0 743 56.2 65.2 61.6 743

From the experiments, one interesting result emerged. The performance of
the simplest collaborative model, VOTER (with low computational cost), was
reasonably good compared to the expensive models employing GA preprocessors.
The best performance was produced by the two-class GA-preprocessed models.
In consideration of the efficiency and simplicity of the model, the two-class
postprocessing VOTER offered much merit.
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[Table 6] Pairwise tests for proportions to compare atomic and hybrid
The symbol A indicates that the difference was
significant at p < 0.05 in the Australian dataset; G for the

models.

German; and K for the Korean.

GA-kNN | GA-ANN CA4.5,, kNNso ANN,, VOTER
ANN A K A K AGK AGK AGK AGK
kNN AGK AGYK AGK AGK AGK AGK
Logit G K K AGK AGK AG G K
DA G K G K AGK AGK AGK G K

Since the TCM-B models involved a two-step process of identification,
their overall accuracy can be obtained by multiplying the accuracy at each step.
Thus the TCM-B would be
performance at each step is relatively high.

inferior to the individual models unless the

[Table-7] presents the performance from both the first and second steps.
Although the overall accuracy at the first step was slightly superior to that of
the individuals, that in the second step was almost the same (in this case, the
prior expectation is that the TCM-B is effective only when the performance
level of second step is near 100%). Hence, a multiplication of results from the
two steps yields an overall performance level of about 50%. Consequently, the
two-step procedure appears to have no practical value.
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[Table-7] Performance of second-order models (TCM-B) on Segment C
with two classes and two steps. In the first step, the two
classes were: at least one out of two is able (can predict), vs.
both are unable. At the second step: one model is able; the
other model is able; or both are.

Data set ‘ Accuracy (%)
(# of able; # of C4.5, kNN;o ANN,,
unable) ls[ 2na Total lst 2na Total lst zna Total
Aus_credit
(184: %) 8.7 | 848 | 727 [ 876 | 859 | 752 | 85 | 821 | 702
German_credit
(244: 56) 783 1 705 | 552 | 785 | 742 | 582 | 752 | 71.2 | 535
Korean_credit
(180: 120) 578 { 550 | 318 | 544 | 538 | 293 | 56.1 | 539 | 302
Average 739 {701 | 51.8 | 735 | 713 | 524 | 723 | 69.1 | 49.9
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4. CONCLUSIONS

This paper has presented a comparative study of knowledge-based methods
for classification. The application involved the binary classification of financial
fraud patterns among credit card vendors.

Binary classification through an atomic model is a simpler task than
distinguishing among four classes using a second-order model. For this reason,
the predictive accuracy of second-order models for classifying four classes was
inferior to all other atomic (first-order) models. This study highlighted the fact
that a hybrid architecture for metalevel learning should carefully consider the
nature of the training set such as the number of cases, the nature of exemplars,
the type of features, the linear separability of clusters, and so on.

In contrast to the second-order models, collaborative models yielded superior
results. These latter models involved a GA preprocessor, or a voting scheme as
a postprocessor.

A limitation of this study lay in the lack of samples which induced
conflicting results. However, a data warehouse environment with extensive
databases could provide second-order models with numerous examples of
conflicting cases involving negative correlation.

In summary, the results indicate that the complexity inherent in developing
a learning system for practical applications can be addressed by the judicious
use of a spectrum of methodologies from data mining. In particular, an
integrated method involving preprocessing and voting can significantly
outperform more elementary approaches. The computational experiments
indicate that learning techniques can be combined synergistically to yield
performance beyond that of the component modules.

The hybrid approach appears to be applicable to many other domains where
neural networks and other data mining tasks are curently employed:
forecasting, pattern recognition, and so on. Consequently, a promising direction
for the future is to apply the concepts in this paper to novel domains to
determine the generality of the results.

(Bu71&4497] A2z - 205



[Hybrid Learning Architectures for Advanced Data Mining)

Reference

[1] [Aha, D. W, Kibler, D. and Albert, M. K.] (1991). Instance-based
learning algorithms , Machine Learning, vol. 6, pp.37-66.
(2] (Brill, F. Z, Brown, E. and Martin, W. N.] (1992). Fast genetic
selection of features for neural network classifiers , IEEE Trans.
Neural Networks, vol. 3, no. 2, pp.324-328.
[3] [Chambers, L.] (1995). Practical Handbook of Genetic Algorithms,
CRC Press.
[4] [Cover, T. M. and Hart, P. E] (1967). Nearest neighbor pattern
classification , IEEE Trans. Information Theory, vol. 13, no. 1,
pp.21-27.
[6] [Dasarathy, B. V.] (1991). Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques, Los Alamitos, CA: IEEE
Computer Society Press.
[6] [Dash, M. and Liu, H.] (1997). Feature selection for classification
, Intelligent Data Analysis,
http://www-east.elsevier.com/ida/browse/0103/ida00013/article.htm.
[7] [Egilmez, K. and S. H. Kim] (1990). “A Logical Approach to
Knowledge Based Control”. J. of Intelligent Manufacturing, v. 1,
pp.59-76. :
[8] [Egilmez, K. and S. H. Kim] (1992). "Control under Uncertainty
through Zone Logic”. Trans. ASME/ J. of Dynamic Systems,
Measurement and Control, v. 114(3), pp.375-389.
[9] [Esprit Statlog] (1993). Comparative testing and evaluation of
statistical and logical learning algorithms for large-scale
applications in classification, prediction and control.
[10] [Fahlman, S. E.J (1988). Faster-learning variations on
back-propagation: An empirical study . In T. J. Sejnowski G.
E. Hinton and D. S. Touretzky, editors, 1988 Connectionist
Models Summer School, San Mateo, CA, 1988. Morgan
Kaufmann.

[11] [Fayyad, U. M., et al.] (1996). Advances in Knowledge Discovery

206 - Journal of Information Technology Application



(7l dojelnlod & H¥ EF dgT=9

AA)

and Data Mining, AAAI Press / The MIT Press.

[12] [Forrest, S.] (1993). Genetic algorithms: principles of natural
selection applied to computation , Science, vol. 261, pp. 872-878.

[13]1 {[Goldberg, D. E.] (1989). Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading, MA: Addison
Wesley.

[14] [Holland, J. H.J] (1975). Adaptation in Natural and Artificial
Systems, Ann Arbor: University of Michigan Press.

[15] [Hopfield, J. J.] (1982). Neural Networks and Physical Systems
with Emergent Collective Computational Abilities , Proc. Nat.
Acad. Sciences USA, v. 79(8), pp. 2554-2558.

[16] [Jo, H., Han, I. and Lee. H.] (1997). Bankruptcy prediction using
case-based reasoning, neural networks, and discriminant analysis
, Expert Systems with Applications, vol. 13, pp. 97-108.

[17] [Kelly, J. D, Jr. and Davis, L] (1991]. A hybrid genetic
algorithm for classification , in Proc. Int. Joint Conf. on Artificial
Intelligence, pp. 645-650.

[18] [Kim, S. H.] (1994a). Learning Systems for Process Automation
through Knowledge Integration. Proc. Second World Congress
on Expert Systems, Lisbon, Portugal, CD, item 63.

[19] [Kim, S. H.] (1994b). Learning and Coordination. Dordrecht,
Netherlands: Kluwer.

[20] [Kim, S. H. and ]. Joo] (1997). Enhanced Prediction of Network
Delays through Second-Order Data Mining: Application to Video
on Demand , 1997 Spring Conf. Proc. of Korean Management
Science Society and the Korean Institute of Industrial Engineers,
Pohang, Korea, Apr. pp. 195-198.

[21] [Kim, S. H. and D. S. Kang] (1997). Implicit versus Explicit
Learning for Forecasting: Case Study in Daily Stock Index
Prediction , PACES/SPICIS 97 Conf. Proc., Singapore, Feb. pp.
93-99,

[22] [Kim, S. H. and K. M. Kim] (1996) Integration Multivariate
Statistics and Neural Networks for Financial Prediction: Case
Study in Interest Rate Forecasting , Proc., First Asia-Pacific

(ARN&EE497) A5

- 207



[Hybrid Learning Architectures for Advanced Data Mining)

Decision Sciencess Inst. Conf., Hong Kong, June pp. 995-1003.

[23] [Kim, S. H. and H. Noh] (1996). A Comparative Study of
ARIMA and Neural Network Models: Case Study in Korea
Corporate Bond Yields Korean Management Science and
Operations Research '96 Fall Conf. [Kor. Title], Seoul, Sept, pp.
19-22.

[24] [Kim, S. H. and M. B. Novick]l (1993). Using Clustering
Techniques to Support Case Reasoning . International J. of
Computer Applications in Technology, v. 6(2/3), pp. 57-73.

[25] [Kim, S. H., Shin, S. W.] (1998). "Optimizing the retrieval of
precedents in case-based reasoning through a genetic algorithm”,
Korean Expert Systems Society '98 Fall Conf. [Kor. title], Seoul,
Nov., pp.123-129.

[26] [Koehn, P.] (1994). Combining genetic algorithms and neural
networks: the encoding problem , Master's thesis, The
University of Tennessee, Knoxville.

[27] [Kolodner, J.J (1993). Case-based reasoning, Morgan Kaufmann
Pulishers, Inc.

[28] [Kwon, Y. S, Han, I, and Lee, K. C.] (1997). Ordinal pairwise
partitioning (OPP) approach to neural networks training in bond
rating , Intelligent Systems in Accounting, Finance and
Management, vol. 6, pp.23-40.

[29] [Langley, P. and Iba, W.] (1993). Average case of a nearest
neighbor algorithm , in Proc. Int. Joint Conf. on Artificial
Intelligence, pp.889-894.

[30] [Leake, D., Kinley, A., and Wilson, D.] (1995). Learning to
improve case adaptation by introspective reasoning and CBR , in
Proc. Int. Conf. on Case-Based Reasoning, Sesimbra, Portugal.

[31] [Lee, K. C, Han, I. and Kwon, Y.] (1996). Hybrid neural
network models for bankruptcy predictions , Decision Support
Systems, vol. 18, pp.63-72.

[32] [Lenat, D.J (1983). EURISKO: A Program that Learns New
Heuristics and Design Concepts: The Nature of Heuristics, III:
Program Design and Results , Artificial Intelligence, v. 21(2),

208 - Journal of Information Technology Application



(AR AolEstold e A8 &4 ETRs

AA]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

(44]

[45]

pp.61-98.

[Liu, H and Motoda, H.] (1998). Feature transformation and
subset selection , IEEE Intelligent Systems, pp.26-28.

[Looney, C. G.] (1997). Pattern Recognition Using Neural
Networks, NY: Oxford University Press.

[Mitchell, T. M.] (1997). Machine Learning, NY: McGraw-Hill.
[Murphy, P.] (1995). UCI Repository for machine learning
databases, Irvine, CA: Univ. of California, Dept. of Information
and Computer Science.

[Porter, B. W., E. R. Bareiss and R.C. Holte] (1990). Concept
Learning and Heuristic Classification in Weak-Theory Domains.
Artificial Intelligence, Vol. 45, No. 1-2, pp.229-63.

[Punch, W. F., Goodman, E. D., et al.] (1993). Further research
on feature selection and classification using genetic algorithms |,
in Int. Conf. on Genetic Algorithms., pp.557-564.

{Quinlan, J. R.] (1986). Induction of Decision Trees. Machine
Learning, v. 1(1), pp.81-106.

[Quinlan, J. R.J] (1993). C45 Programs for Machine Learning,
Morgan Kaufmann Publishers.

[Rumelhart, D. E., Hinton, G. E. and Williams, R. ]J.] (1986).
Learning Internal Representations by Error Propagation , in
Parallel Distributed Processing: Explorations in the
Microstructures of Cognition, vol. 1, pp.318-362, Cambridge, MA:
MIT Press.

[Schank, R. C. and Abelson, R.} (1977). Scripts, plans, goals and
understanding , Hillsdale, NJ: Lawrence Erlbaum.

[Schank, R. C. and Riesbeck, C.] (1990). Inside Case-Based
Reasoning, Hillsdale, NJ: Lawrence Erlbaum.

(Shibazaki, H., and S. H. Kim] (1992). Learning Systems for
Manufacturing Automation: Integrating Explicit and Implicit
Knowledge , Robotics and Computer-Integrated Manufacturing,
v. 9.

[Siedlecki, W. and Sklansky, J.J (1989). A note on genetic
algorithms for large-scale feature selection , Pattern Recognition

(Brrled4d7) A0%

- 209



[Hybrid Learning Architectures for Advanced Data Mining}

[46]

[47]

(48]

[49]

[50]

[51]

Letters 10, pp.335-347.
[Standfill, C. and Waltz, D.] (1986). - Toward memory-based
reasoning , Communications of the ACM, pp.1213-1228.
[Sycara, K. and D. Navinchandra] (1991). Index Transformation
Techniques for Facilitating Creative Use of Multiple Cases. In
Proc. 12th Int. Joint Conf. on Artificial Intelligence, Morgan
Kaufman, Los Altos, CA, pp.347-352.
[Vafaie, H. and De Jong, K.] (1998). Feature space
transformation using a genetic algorithms , IEEE Intelligent
Systems, pp.57-65.
[Watson, 1] (1997). Applying case-based reasoning: Techniques
for enterprise systems, Morgan Kaufmann Pulishers, Inc.
[Wettschereck, D., Aha, D. W., and Mohri, T.] (1997). A review
and empirical evaluation of feature weighting methods for a class
of lazy learning algorithms , Artificial Intelligence Review, vol.
11, pp.273-314.
[Yang, J. H. and Honavar, V.] (1998). Feature subset selection
using a genetic algorithm , IEEE Intelligent Systems, pp.44-49.

210 - Journal of Information Technology Application



(Mg dolerlo]d& AT EF FeT=] AA]

MAE dejglrle] Y& AT 3 FaTEe AA

AYD - A4S

2 o

B =FdAE 543 27289 A%y EREHES AXNY 2 A4
P2 2 S T3 4 GHETY AHE AIEA Fo2H 459
S Y £ Y FFTRE AANYL V&€ volHAA Y A g
4 (input feature-dimension)®] ZAE AF AR 7Y AA % FTA
A, Aed 99 2y FANE FFFoEZN AE2E JAE A
A HHe 99 2E AANE HF ol &<F7] (second-order learner)
92 B4 o RYPE9 tF Fo 934 wE gArER EYE FA
B A% FeaN ANB

2 dAFNAE EF a7y 4% H/ME A3 dHolErteld e 73
HEAQ ol 79 FA FH&3tdch 4 A, AAH 2 2 o
g e A3 & FXY Fxo AL 99 R¥AH] FAHLE &
o3t Y4 E JEdlon, gRge FHwE Stgdte oA 57
9o AL 7NEAFAAY AAYE A5 HolHAA Y L SYH S RO
A Z3AT. 9& AAEHd 2L A FAZR EA A FHRFYo]
Frdg U, O IEF EAS} 2ol B dHARY FHo| 7t A
FolX e ggFol §olstx ¥7] WEels} Aladn.

3 o)z} &7|e AENHL YAME HX BAR A =0 W
83ttt AR EB, ayte] Sugeno Integral, Dempter-Shaffer, Borda
counts 98 ZiFEFE HAHAEY AANE 4 FHEY RPoZ Lo
24 2o A8 & 57X Age] teE Ao JudEnh
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