• Title/Summary/Keyword: Machine Part

Search Result 1,652, Processing Time 0.03 seconds

Effect of Surface Roughness on Cutting Conditions in CNC lathe C-Axis Milling Arc Cutting (CNC선반 C축 밀링 원호가공에서 절삭조건이 표면 거칠기에 미치는 영향)

  • Shin, Kuk-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.4
    • /
    • pp.99-105
    • /
    • 2014
  • The domestic airline industry undertakes the production of finished products by assembling existing self-described components via a design process which involves assembly and production steps, after which many of the finished products are exported. However, high reliability and stability must be guaranteed, because customers require high-precision components at the time of manufacturing. In the aircraft parts industry, the mass production of high-value-added parts is limited. Therefore, a small production scale depending on the part is used, as many types of conventional CNC lathe machines with X-axis and Z-axis as well as Z-axis and C-axis CNC milling are used. The parts also rely on high-pressure air to increase production. The most important factors are good stability during processing, as high-precision parts are required, as noted above. It was found that as the C-axis rotation speed increased, the diameter of the cutting tool decreased with a decrease in the surface roughness, while the workpiece rotation speed increased with an increase in the surface roughness.

An Experimental Study on Exhaust Emission in a Gasoline Engine Using PDA and Spark Plug Location (점화플러그 삽입위치와 PDA 밸브를 이용한 가솔린엔진의 배출가스에 대한 실험적 연구)

  • Kim Dae-Yeol;Kim Dae-Yeol;Kim Yang-Sul
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.32-40
    • /
    • 2005
  • The purpose of this study is to investigate variation of spark plug protrusion and PDA valve on the exhaust emission in a gasoline engine. Swirl is one of the important parameters that affects the characteristics of combustion. PDA valve has been developed to satisfy requirements of sufficient swirl generation for improving the combustion and reducing of emission level. Also, especially, the variation of spark plug protrusion have an important effect to the early flame propagative process. This is largely due to the high flame speed by short of flame propagation distance. So, this is forced that injection timing, spark timing and intake air motion govern the stable combustion. As a result, using two combustion chamber, without charge of engine specification and the variable spark plug location and PDA valve could be reduced exhaust gas at a part load engine conditions(1500rpm imep 3.9bar, 2000rpm imep 3.2bar, 2400rpm imep 3.9bar).

A Study on the Characteristics of Machining for AC8A-T6 Aluminum Alloy (AC8A-T6 알루미늄 합금재의 절삭가공 특성에 관한 연구)

  • 최현민;김경우;김우순;김용환;김동현;채왕석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.192-197
    • /
    • 2002
  • In this study, examined the cutting characteristics of alumuminum alloy AC8A-T6 that is used to present car piston materials. And in been holding materials machining empirically escape as result that experiment comparison changing the cutting speed and feed on various condition to choose efficient machining condition. The following results can be summarized from this research. 1. As the cutting speed decreased, principal cutting force and thrust cutting force is increased, and reason that cutting force interacts greatly in the low cutting speed is thought by result by BUE's stabilization. 2. The feed speed and cutting speed increase, friction factor is decrescent and the cause appeared the thrust cutting force is fallen than cutting force relatively because chip flow according to increase of the feed rate is constraint. 3. Though specific cutting resistance grows cutting area and the feed rate are few, the cause was expose that shear angle decreases by rake face of tool gets into negative angle remarkably as wear of a cutting tool or defect part of workpiece is cut. 4. Cutting speed do greatly depth of cut is slow, surface roughness examined closely through an experiment that becomes bad, and know that it can get good surface that process cutting speed because do feed rate by 0.1mm/rev low more than 250m/min to get good surface roughness can.

  • PDF

Automotive Body Design (차량 차체 설계)

  • Lee, Jeong-Ick;Kim, Byoun-Gon;Chung, Tae-Jin
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.5
    • /
    • pp.10-22
    • /
    • 2008
  • In an automotive body structure, a design configuration that fulfills structural requirements such as deflection, stiffness and strength is necessary for structural design and is composed of various components. The integrated design is used to obtain a minimum weight structure with optimal or feasible performance based on conflicting constraints and boundaries. The mechanical design must begin with the definition of one or more concepts for structure and specification requirements in a given application environment. Structural optimization is then introduced as an integral part of the product design and used to yield a superior design to the conventional linear one. Although finite element analysis has been firmly established and extensively used in the past, geometric and material nonlinear analyses have also received considerable attention over the past decades. Also, nonlinear analysis may be useful in the area of structural designs where instability phenomena can include critical design criteria such as plastic strain and residual deformation. This proposed approach can be used for complicated structural analysis for an integrated design process with the nonlinear feasible local flexibilities between system and subsystems.

Cogging Force Verification of the Back-yoke Length of a Moving-coil-type Slotless Linear Synchronous Motor

  • Kim, Yong-Jae;Jung, Sang-Yong
    • Journal of Magnetics
    • /
    • v.14 no.1
    • /
    • pp.47-51
    • /
    • 2009
  • The coreless linear synchronous motor (coreless LSM) has been widely used as a driving source of semiconductor production processes for machine speeding up, positioning accuracy and simple maintenance. However, this coreless LSM suffers the disadvantage of decreased thrust force created by the leakage of magnetic flux. With the goal of increasing the generated thrust force and decreasing the cogging force, the slot of the core part was removed and a moving-coil-type slotless LSM (moving-coil-type slotless LSM) is proposed in this paper. Although this moving-coil-type slotless LSM with a back-yoke at the primary side demonstrated an increase in the generated thrust force, it remained capable of generating the cogging force when the primary side was moved due to the position between the permanent magnet and the back-yoke. Therefore, we attempted to decrease the cogging force of the moving-coil-type slotless LSM. We found that the back-yoke length at the primary side needs to be made $0.5{\tau}$ longer than the integral multiple of the magnetic pole pitch in order to decrease the cogging force created by the moving-coil-type slotless LSM.

Dynamic prediction fatigue life of composite wind turbine blade

  • Lecheb, Samir;Nour, Abdelkader;Chellil, Ahmed;Mechakra, Hamza;Ghanem, Hicham;Kebir, Hocine
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.673-691
    • /
    • 2015
  • In this paper we are particularly focusing on the dynamic crack fatigue life of a 25 m length wind turbine blade. The blade consists of composite materiel (glass/epoxy). This work consisted initially to make a theoretical study, the turbine blade is modeled as a Timoshenko rotating beam and the analytical formulation is obtained. After applying boundary condition and loads, we have studied the stress, strain and displacement in order to determine the critical zone, also show the six first modes shapes to the wind turbine blade. Secondly was addressed to study the crack initiation in critical zone which based to finite element to give the results, then follow the evolution of the displacement, strain, stress and first six naturals frequencies a function as crack growth. In the experimental part the laminate plate specimen with two layers is tested under cyclic load in fully reversible tensile at ratio test (R = 0), the fast fracture occur phenomenon and the fatigue life are presented, the fatigue testing exerted in INSTRON 8801 machine. Finally which allows the knowledge their effect on the fatigue life, this residual change of dynamic behavior parameters can be used to predicted a crack size and diagnostic of blade.

Minimizing Total Flow Time for Multiple Parts and Assembly Flow Shop (복수의 부품 및 조립 흐름공정의 총흐름시간 최소화)

  • Moon, Gee-Ju;Lee, Jae-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.4
    • /
    • pp.82-88
    • /
    • 2011
  • A typical job sequencing problem is studied in this research to improve productivities in manufacturing companies. The problem consists of two-stage parts and assembly processes. Two parts are provided independently each other and then two sequential assembly processes are followed. A new heuristic is developed to solve the new type of sequencing problem. Initial solution is developed in the first stage and then the initial solution is improved in the second stage. In the first stage, a longer part manufacturing time for each job is selected between two, and then a sequence is determined by descending order of the times. This initial sequence is compared with Johnson's sequence obtained from 2-machine assembly times. Any mismatches are tried to switch as one possible alternative and completion time is calculated to determine whether to accept the new sequence or not to replace the current sequence. Searching process stops if no more improvement can be made.

A Real-Time Monitoring System Model for Reducing Manufacturing Lead-Time in Numerical Control Process - Focusing on the Marine Engine Block Process - (제조 리드타임 단축을 위한 NC 가공공정에서의 실시간 모니터링 시스템 모형 - 선박용 엔진블록 가공공정을 중심으로 -)

  • Kong, Myung-Dal
    • Journal of the Korea Safety Management & Science
    • /
    • v.20 no.3
    • /
    • pp.11-19
    • /
    • 2018
  • This study suggests a model of production information system that can reduce manufacturing lead time and uniformize quality by using DNC S/W as a part of constructing production information management system in the industrial field of the existing marine engine block manufacturing companies. Under the effect of development of this system, the NC machine interface device can be installed in the control computer to obtain the quality information of the workpiece in real time so that the time to inspect the process quality and verify the product defect information can be reduced by more than 70%. In addition, the reliability of quality information has been improved and the external credibility has been improved. It took 30 minutes for operator to obtain, analyze and manage the quality information when the existing USB memory is used, but the communication between the NC controller computer and the NC controller in real time was completed to analyze the workpiece within 10 seconds.

Analysis on Air-Gap Magnetic Flux of Synchronous Generator According to Short-Circuit Types in Winding (권선단락 유형별 동기발전기의 공극자속 파형 분석)

  • Bae, Duck-Kweon;Kim, Dong-Hun;Park, Jung-Shin;Lee, Dong-Young;Lee, Sung-Ill
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.929-935
    • /
    • 2009
  • As modem industrialized society progresses, the demand for electric power is increasing rapidly. The electric power system is getting amazingly bigger and complicated, which can easily induce serious troubles from the potential of large fault problems and/or system failure. The monitoring and diagnosis of the electric machine for the fault detection and protection has been important part in the electric power system. Most faults in the generator appear in the winding. This paper presents the air-gap magnetic flux characteristic of a small-scale 2-pole synchronous generator according to the faults in the field winding to protect the generator from the fault. The magnetic flux patterns in air-gap of a generator under various fault conditions as well as a normal state are simulated by using finite element method. These results are successfully applied to the detection and diagnosis of the short-circuit condition in rotor windings of a high capacitor generator.

Statistical Inference for an Arithmetic Process

  • Francis, Leung Kit-Nam
    • Industrial Engineering and Management Systems
    • /
    • v.1 no.1
    • /
    • pp.87-92
    • /
    • 2002
  • A stochastic process {$A_n$, n = 1, 2, ...} is an arithmetic process (AP) if there exists some real number, d, so that {$A_n$ + (n-1)d, n =1, 2, ...} is a renewal process (RP). AP is a stochastically monotonic process and can be used for modeling a point process, i.e. point events occurring in a haphazard way in time (or space), especially with a trend. For example, the vents may be failures arising from a deteriorating machine; and such a series of failures id distributed haphazardly along a time continuum. In this paper, we discuss estimation procedures for an AP, similar to those for a geometric process (GP) proposed by Lam (1992). Two statistics are suggested for testing whether a given process is an AP. If this is so, we can estimate the parameters d, ${\mu}_{A1}$ and ${\sigma}^{2}_{A1}$ of the AP based on the techniques of simple linear regression, where ${\mu}_{A1}$ and ${\sigma}^2_{A1}$ are the mean and variance of the first random variable $A_1$ respectively. In this paper, the procedures are, for the most part, discussed in reliability terminology. Of course, the methods are valid in any area of application, in which case they should be interpreted accordingly.