• 제목/요약/키워드: Machine Learning Empirical Study

검색결과 92건 처리시간 0.033초

Empirical Comparisons of Clustering Algorithms using Silhouette Information

  • Jun, Sung-Hae;Lee, Seung-Joo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제10권1호
    • /
    • pp.31-36
    • /
    • 2010
  • Many clustering algorithms have been used in diverse fields. When we need to group given data set into clusters, many clustering algorithms based on similarity or distance measures are considered. Most clustering works have been based on hierarchical and non-hierarchical clustering algorithms. Generally, for the clustering works, researchers have used clustering algorithms case by case from these algorithms. Also they have to determine proper clustering methods subjectively by their prior knowledge. In this paper, to solve the subjective problem of clustering we make empirical comparisons of popular clustering algorithms which are hierarchical and non hierarchical techniques using Silhouette measure. We use silhouette information to evaluate the clustering results such as the number of clusters and cluster variance. We verify our comparison study by experimental results using data sets from UCI machine learning repository. Therefore we are able to use efficient and objective clustering algorithms.

Forecasting Bulk Freight Rates with Machine Learning Methods

  • Lim, Sangseop;Kim, Seokhun
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권7호
    • /
    • pp.127-132
    • /
    • 2021
  • 본 논문은 건화물시장과 탱커시장의 운임지수 예측에 관하여 머신러닝을 적용하였으며 신호분해법인 웨이블릿 분해와 EMD분해를 데이터 전처리 과정에 반영하여 시간의 영역의 정보와 주파수 영역의 정보를 모두 반영할 수 있는 운임예측모형을 구축하였다. 건화물 시장의 경우 웨이블릿으로 분해한 예측모형이 우수하였으며 탱커시장의 EMD분해로 예측한 모형이 우수하였으며 실무적으로 각 운송시장 참여자들에게 새로운 단기예측 방법론을 제시하였다. 이러한 연구는 운송시장에서 양적으로 가장 중요한 건화물 시장과 탱커시장에 대한 다양한 예측방법론을 확대하고 새로운 방법론을 제시하였다는 측면에서 중요하며, 변동성이 큰 운임시장에서 과학적인 의사결정 방법에 대한 실무적인 요구를 반영할 수 있을 뿐만 아니라 가장 빈번한 스팟거래에 합리적인 의사결정이 이뤄질 수 있는 기초가 될 것으로 기대된다.

Lessons Learned from Institutionalization of ML (Machine Learning) Supported HR Services in the Existence of Multiple Institutional Logics

  • Gyeung-min Kim;Heesun Kim
    • Asia pacific journal of information systems
    • /
    • 제33권4호
    • /
    • pp.1171-1187
    • /
    • 2023
  • This study explores how an organization has successfully implemented ML-supported HR services to resolve high employee turnover problems in the IT sector. The empirical setting of the research is where contradicting institutional logics exist among technical, HR, and business groups regarding the ML model development and use of the model predictions in HR services. Institutional framework is used to identify the roles of organizational actors and the legitimacy structures in the organizational environments that can shape or constrain the ML led organizational changes. In institutional theories, technology adoption and organizational change are not only constrained by organizational context, but also fostered through organizational actors' roles and efforts to increase the legitimacy for the change. This research found that when multiple contradicting institutional logics exist, legitimizing the establishment of an enabling environment for multiple logics to reconcile and for the project to move forward is critical. Industry-wide conditions, previous experiences with the pilot ML project, forming a TFT with clearly defined roles and responsibilities, and relevant KPIs are found to legitimize the HR team and the business division to collaborate with the technical personnel to launch ML-supported HR services.

Assessment of maximum liquefaction distance using soft computing approaches

  • Kishan Kumar;Pijush Samui;Shiva S. Choudhary
    • Geomechanics and Engineering
    • /
    • 제37권4호
    • /
    • pp.395-418
    • /
    • 2024
  • The epicentral region of earthquakes is typically where liquefaction-related damage takes place. To determine the maximum distance, such as maximum epicentral distance (Re), maximum fault distance (Rf), or maximum hypocentral distance (Rh), at which an earthquake can inflict damage, given its magnitude, this study, using a recently updated global liquefaction database, multiple ML models are built to predict the limiting distances (Re, Rf, or Rh) required for an earthquake of a given magnitude to cause damage. Four machine learning models LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), CNN (Convolutional Neural Network), and XGB (Extreme Gradient Boosting) are developed using the Python programming language. All four proposed ML models performed better than empirical models for limiting distance assessment. Among these models, the XGB model outperformed all the models. In order to determine how well the suggested models can predict limiting distances, a number of statistical parameters have been studied. To compare the accuracy of the proposed models, rank analysis, error matrix, and Taylor diagram have been developed. The ML models proposed in this paper are more robust than other current models and may be used to assess the minimal energy of a liquefaction disaster caused by an earthquake or to estimate the maximum distance of a liquefied site provided an earthquake in rapid disaster mapping.

BERT 기반 감성분석을 이용한 추천시스템 (Recommender system using BERT sentiment analysis)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제27권2호
    • /
    • pp.1-15
    • /
    • 2021
  • 추천시스템은 사용자의 기호를 파악하여 물품 구매 결정을 도와주는 역할을 할 뿐만 아니라, 비즈니스 전략의 관점에서도 중요한 역할을 하기에 많은 기업과 기관에서 관심을 갖고 있다. 최근에는 다양한 추천시스템 연구 중에서도 NLP와 딥러닝 등을 결합한 하이브리드 추천시스템 연구가 증가하고 있다. NLP를 이용한 감성분석은 사용자 리뷰 데이터가 증가함에 따라 2000년대 중반부터 활용되기 시작하였지만, 기계학습 기반 텍스트 분류를 통해서는 텍스트의 특성을 완전히 고려하기 어렵기 때문에 리뷰의 정보를 식별하기 어려운 단점을 갖고 있다. 본 연구에서는 기계학습의 단점을 보완하기 위하여 BERT 기반 감성분석을 활용한 추천시스템을 제안하고자 한다. 비교 모형은 Naive-CF(collaborative filtering), SVD(singular value decomposition)-CF, MF(matrix factorization)-CF, BPR-MF(Bayesian personalized ranking matrix factorization)-CF, LSTM, CNN-LSTM, GRU(Gated Recurrent Units)를 기반으로 하는 추천 모형이며, 실제 데이터에 대한 분석 결과, BERT를 기반으로 하는 추천시스템의 성과가 가장 우수한 것으로 나타났다.

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.41-50
    • /
    • 2020
  • 감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.

기계학습 기반의 IABP 부이 자료와 AMSR2 위성영상을 이용한 여름철 북극 대기 온도 추정 (The Estimation of Arctic Air Temperature in Summer Based on Machine Learning Approaches Using IABP Buoy and AMSR2 Satellite Data)

  • 한대현;김영준;임정호;이상균;이연수;김현철
    • 대한원격탐사학회지
    • /
    • 제34권6_2호
    • /
    • pp.1261-1272
    • /
    • 2018
  • 북극 지역의 대기 온도는 바다 및 해빙, 대기 사이의 에너지 교환에 큰 역할을 하므로 북극 대기 온도를 정확하게 파악하는 것은 중요하다. 하지만 현장 관측 자료들은 북극 대기 온도의 공간적인 분포를 나타내는 데에 한계가 있다. 따라서 본 연구에서는 부이(buoy) 자료와 Advanced Microwave Scanning Radiometer 2(AMSR2) 위성자료를 이용하여 기계학습 기반 여름철 대기 온도 추정 모델을 구축하였다. 기계학습으로는 random forest(RF) 및 support vector machine(SVM)을 사용하였으며, AMSR2 관측 시간에 따라 하루 두 번의 대기 온도를 추정하였다. 또한 추정된 대기 온도를 유럽 중기예보센터(European Centre for Medium-Range Weather Forecasts, ECMWF)의 ERA-Interim 재분석자료의 대기 온도와 공간 분포를 비교하였다. 교차 검증 결과 두 가지 기계학습 기법 모두 0.84-0.88의 $R^2$$1.31-1.53^{\circ}C$의 RMSE를 보였다. 공간적인 분포에서 IABP 부이 관측 자료가 존재하지 않는 바렌츠해(Barents Sea), 카라해(Kara Sea) 및 배핀만(Baffin bay) 지역에서는 기계학습 모델이 ERA-Interim 대기 온도에 비하여 과소 추정하는 경향을 보였다. 본 연구는 경험적인 북극 대기 온도 추정의 가능성과 한계점을 서술하였다.

시공 중 흙막이 벽체 수평변위 예측을 위한 앙상블 모델 개발 (Development of an Ensemble Prediction Model for Lateral Deformation of Retaining Wall Under Construction)

  • 서승환;정문경
    • 한국지반공학회논문집
    • /
    • 제39권4호
    • /
    • pp.5-17
    • /
    • 2023
  • 도심지 지하굴착 공사가 대형화되면서 공사 중 안전사고에 대한 위험요인이 더욱 증가하고 있다. 이에 따라 공사현장의 위험요소를 모니터링하고 사전에 예측할 수 있는 기술이 필요하다. 굴착으로 인한 흙막이 벽체의 변형을 예측하는 방법에는 크게 경험식과 수치해석 두 가지 방법으로 분류할 수 있으며, 최근에는 인공지능 기술의 발달과 함께 머신러닝 기법을 활용한 예측 모델이 한 가지 방법으로 자리 잡고 있다. 본 연구에서는 예측력과 효율성이 우수한 부스팅 계열 알고리즘 및 앙상블 모델을 이용하여 시공 중 흙막이 벽체 변형을 예측하는 모델을 구축하였다. 지하흙막이 공사의 설계-시공-유지관리 과정에서 도출되는 자료들을 복합적으로 활용하여 데이터베이스를 구축하고, 이 자료를 토대로 학습모델을 만들고 성능을 평가하였다. 모델 성능 평가 결과, 높은 정확도로 흙막이 벽체 변형을 예측할 수 있었으며, 지반계측 자료를 학습에 활용함으로써 실제 시공과정의 특성이 반영된 예측결과를 제시할 수 있었다. 본 연구에서 구축한 예측 모델을 활용하여 시공 중 흙막이 벽체의 안정성 평가 및 모니터링에 활용할 수 있을 것으로 기대된다.

Hi, KIA! 기계 학습을 이용한 기동어 기반 감성 분류 (Hi, KIA! Classifying Emotional States from Wake-up Words Using Machine Learning)

  • 김태수;김영우;김근형;김철민;전형석;석현정
    • 감성과학
    • /
    • 제24권1호
    • /
    • pp.91-104
    • /
    • 2021
  • 본 연구에서는 승용차에서 사람들이 기기를 사용하기 위해 사용하는 기동어인 "Hi, KIA!"의 감성을 기계학습을 기반으로 분류가 가능한가에 대해 탐색하였다. 감성 분류를 위해 신남, 화남, 절망, 보통 총 4가지 감정별로 3가지 시나리오를 작성하여, 자동차 운전 상황에서 발생할 수 있는 12가지의 사용자 감정 시나리오를 제작하였다. 시각화 자료를 기반으로 총 9명의 대학생을 대상으로 녹음을 진행하였다. 수집된 녹음 파일의 전체 문장에서 기동어 부분만 별도로 추출하는 과정을 거쳐, 전체 문장 파일, 기동어 파일 총 두 개의 데이터 세트로 정리되었다. 음성 분석에서는 음향 특성을 추출하고 추출된 데이터를 svmRadial 방법을 이용하여 기계 학습 기반의 알고리즘을 제작해, 제작된 알고리즘의 감정 예측 정확성 및 가능성을 파악하였다. 9명의 참여자와 4개의 감정 카테고리를 통틀어 기동어의 정확성(60.19%: 22~81%)과 전체 문장의 정확성(41.51%)을 비교했다. 또한, 참여자 개별로 정확도와 민감도를 확인하였을 때, 성능을 보임을 확인하였으며, 각 사용자 별 기계 학습을 위해 선정된 피쳐들이 유사함을 확인하였다. 본 연구는 기동어만으로도 사용자의 감정 추출과 보이스 인터페이스 개발 시 기동어 감정 파악 기술이 잠재적으로 적용 가능한데 대한 실험적 증거를 제공할 수 있을 것으로 기대한다.

핀테크 기반 주식투자 최적화 모델 구축 사례 연구 : 기관투자자 대상 (A Case Study on the Establishment of an Equity Investment Optimization Model based on FinTech: For Institutional Investors)

  • 김홍곤;김소담;김희웅
    • 지식경영연구
    • /
    • 제19권1호
    • /
    • pp.97-118
    • /
    • 2018
  • The finance-investment industry is currently focusing on research related to artificial intelligence and big data, moving beyond conventional theories of financial engineering. However, the case of equity optimization portfolio by using an artificial intelligence, big data, and its performance is rarely realized in practice. Thus, the purpose of this study is to propose process improvements in equity selection, information analysis, and portfolio composition, and lastly an improvement in portfolio returns, with the case of an equity optimization model based on quantitative research by an artificial intelligence. This paper is an empirical study of the portfolio based on an artificial intelligence technology of "D" asset management, which is the largest domestic active-quant-fiduciary management in accordance with the purpose of this paper. This study will apply artificial intelligence to finance, analyzing financial and demand-supply information and automating factor-selection and weight of equity through machine learning based on the artificial neural network. Also, the learning the process for the composition of portfolio optimization and its performance by applying genetic algorithms to models will be documented. This study posits a model that the asset management industry can achieve, with continuous and stable excess performance, low costs and high efficiency in the process of investment.