Acknowledgement
본 연구는 과학기술정보통신부 한국건설기술연구원 주요사업(과제번호 20230105-001, 인공지능을 활용한 대심도 지하 대공간의 스마트 복합 솔루션 개발)으로 수행되었습니다.
References
- Chen, T. and Guestrin, C. (2016), XGBoost: A Scalable Tree Boosting System, Proceedings of the KDD(Knowledge Discovery and Data Mining) '16, San Francisco, CA, USA, pp.1-10.
- Clough, G. W. and O'Rourke, T. D. (1990), Construction Induced Movements of in Situ Walls, Proceedings of the Specialty Conference on Design and Performance of Earth Retaining Structures, ASCE, Reston, VA, USA, pp.439-470.
- Friedman, J. H. (2001), Greedy Function Approximation: A Gradient Boosting Machine, The Annals Statistics, Vol.29, No.5, pp.1189-1232. https://doi.org/10.1214/aos/1013203451
- Goh, A. T. C., Wong, K. S., and Broms, B. B. (1995), Estimation of Lateral Wall Movements in Braced Excavations Using Neural Networks, Canadian Geotechnical Journal, Vol.32, No.6, pp.1059-1064. https://doi.org/10.1139/t95-103
- Goh, A. T. C., Zhang, F., Zhang, W., Zhang, Y., and Liu, H. (2017), A Simple Estimation Model for 3D Braced Excavation Wall Deflection, Computers and Geotechnics, Vol.83, No.3, pp. 106-113. https://doi.org/10.1016/j.compgeo.2016.10.022
- Hwang, R. N., Lee, T. Y., and Chou, C. R. (2012), Evaluation of Performance of Diaphragm Walls by Wall Deflection Paths, Journal of Geoengineering, Vol.7, No.1, pp.1-12.
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., and Liu, T. Y. (2017), LightGBM: A Highly Efficient Gradient Boosting Decision Tree, Proceedings of the 31st Conference on Neural Information Processing System, Long Beach, CA, USA, pp.1-9.
- Kim, H.T., Park, S. W., Kwon, Y. H., and Kim J. H. (2000), Development of a System Predicting Maximum Displacement of Earth Retaining Walls at Various Excavation Stages Using Artificial Neural Network, J. of the Korean Geotechnical Society, Vol.16, No.1, pp.83-97.
- Kung, G. T. C., Hsiao, E. C. L., Schuster, M., and Juang, C. H. (2007), A Neural Network Approach to Estimating Deflection of Diaphragm Walls Caused by Excavation in Clays, Computers and Geotechnics, Vol.34, No.5, pp.385-396. https://doi.org/10.1016/j.compgeo.2007.05.007
- Lee, S. and Kim, S. K. (2008), A Study on Deformation Analysis of the Earth Retaining Wall, J. of the Korean Geotechnical Society, Vol.24, No.2, pp.27-36.
- Long, M. (2001), Database for Retaining Wall and Ground Movements due to Deep Excavations, Journal of Geotechnical and Geoenvironmental Engineering, Vol.127, No.3, pp.203-224. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:3(203)
- Moormann, C. (2004), Analysis of Wall and Ground Movements due to Deep Excavations in Soft Soil based on a New Worldwide Database, Soils and Foundations, Vol.44, No.1, pp.87-98. https://doi.org/10.3208/sandf.44.87
- Park, C. S. and Joung, S. M. (2020), Numerical Investigation on the Excavation Width and Property of Deformation of Earth Retaining Wall, J. of the Korean Geotechnical Society, Vol.36, No.12, pp. 57-68.
- Peck, R. B. (1969), Deep Excavations and Tunneling in Soft Ground, Proceedings of the 7th International Conference on Soil Mechanic and Foundation Engineering, Mexico City, Mexico, pp.225-290.
- Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A. V., and Gulin, A. (2018), Catboost: Unbiased Boosting with Categorical Features, Proceedings of the 32nd Conference on Neural Information Processing System, Montreal, Canada, pp.1-11.
- Ray, R., Kumar, D., Samui, P., Roy, L. B., Goh, A. T. C., and Zhang, W. (2021), Application of Soft Computing Techniques for Shallow Foundation Reliability in Geotechnical Engineering, Geoscience Frontiers, Vol.12, No.1, pp.375-383. https://doi.org/10.1016/j.gsf.2020.05.003
- Zhang, W., Zhang, R., Wu C., Goh, A.T.C., Lacasse, S., Liu, Z., and Liu H. (2020), State-of-the-art Review of Soft Computing Application in Underground Excavations, Geoscience Frontiers, 11, pp.1095-1106. https://doi.org/10.1016/j.gsf.2019.12.003
- Zhang, R., Wu, C., Goh, A. T. C., Bohlke, T., and Zhang, W. (2021), Estimation of Diaphragm Wall Deflections for Deep Braced Excavation in Anisotropic Clays Using Ensemble Learning, Geoscience Frontiers, Vol.12, No.1, pp.365-373. https://doi.org/10.1016/j.gsf.2020.03.003