DOI QR코드

DOI QR Code

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun (SKK Business School, Sungkyunkwan University) ;
  • Lee, Kun Chang (SKK Business School/SAIHST (Samsung Advanced Institute of Health Sciences & Technology), Sungkyunkwan University)
  • Received : 2020.10.13
  • Accepted : 2020.11.10
  • Published : 2020.11.30

Abstract

Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

감성분석 연구에서는 문장에 내포된 감성을 결정짓는 단어를 찾는 것으로부터 시작된다. 경영자는 소비자가 주로 사용하는 단어를 분석함으로써 시장의 반응을 이해할 수 있다. 본 연구에서는 감성분류의 성능에 영향을 미치는 단어를 찾기 위하여 입자군집최적화 탐색방법과 다목적진화 알고리즘이 적용된 속성선택 방법을 제안한다. 속성선택 방법은 기존 머신러닝 분류기를 벤치마킹함으로써 성능이 비교된다. 벤치마킹된 분류기는 의사결정나무, 나이브 베이지안 네트워크, 서포터 벡터 머신, 랜덤포레스트, 배깅, 랜덤 서브스페이스, 로테이션 포레스트이다. 연구결과에 따르면, 입자군집 최적화 알고리즘이 적용된 속성선택방법으로 선택된 속성을 사용한 경우에 속성의 수를 상당히 줄일 수 있었고, 분류기의 성능을 유지시킬 수 있었다. 특히, 정확도 결과에서는 입자군집 최적화 탐색방법으로 선택된 속성을 사용한 경우의 서포터 벡터 머신의 성능이 가장 높게 나타났다. AUC 결과에서는 랜덤 서브스페이스가 가장 높게 나타났다. 본 연구의 결과는 해당 탐색방법과 분류기를 적용함으로써 오피니언 마이닝 모델의 성능을 효율적으로 유지 및 개선시키도록 도움을 준다.

Keywords

References

  1. K. Xu, G. Qi, J. Huang, T. Wu, and X. Fu, "Detecting Bursts in Sentiment-Aware Topics from Social Media," Knowledge-Based Systems, Vol. 141, pp. 44-54, Feb 2018. DOI: 10.1016/j.knosys.2017.11.007
  2. A. Yadollahi, A. G. Shahraki, and O. R. Zaiane, "Current State of Text Sentiment Analysis from Opinion to Emotion Mining," ACM Computing Surveys (CSUR), Vol. 50, No.2, pp. 1-33, May 2017. DOI: 10.1145/3057270
  3. K. S. Eo, and K. C. Lee, "Exploring an Optimal Feature Selection Method for Effective Opinion Mining Tasks," Journal of the Korea Society of Computer and Information, Vol. 24, No. 2, pp. 171-177, Feb 2019. DOI: 10.9708/jksci.2019.24.02.171
  4. N. F. Da Silva, E. R. Hruschka, and E. R. Hruschka Jr, "Tweet Sentiment Analysis with Classifier Ensembles," Decision Support Systems, Vol. 66, pp. 170-179, Oct 2014. DOI: 10.1016/j.dss.2014.07.003
  5. M. A. Friedl, and C. E. Brodley, "Decision Tree Classification of Land Cover from Remotely Sensed Data," Remote sensing of environment, Vol. 61, No. 3, pp. 399-409, Sep 1997. DOI: 10.1016/S0034-4257(97)00049-7
  6. N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network Classifiers," Machine Learning, Vol. 29, No. 2-3, pp. 131-163, Nov 1997. DOI: 10.1023/A:1007465528199
  7. J. A. Suykens, and J. Vandewalle, "Least Squares Support Vector Machine Classifiers,". Neural Processing Letters, Vol. 9, No. 3, pp. 293-300, Jun 1999. DOI: 10.1023/A:1018628609742
  8. L. Breiman, "Random Forests," Machine Learning, Vol. 45, No. 1, pp. 5-32, Oct 2001. DOI: 10.1023/A:1010933404324
  9. L. Breiman, "Bagging Predictors," Machine Learning, Vol. 24, No. 2, pp. 123-140, Aug 1996. DOI: 10.1007/BF00058655
  10. T. K. Ho, "The Random Subspace Method for Constructing Decision Forests," IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 832-844, Aug 1998. DOI: 10.1109/34.709601
  11. Q. Ye, Z. Zhang, and R. Law, "Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches," Expert Systems with Applications, Vol. 36, No. 3, pp. 6527-6535, Apr 2009. DOI: 10.1016/j.eswa.2008.07.035
  12. R. Moraes, J. F. Valiati, and W. P. G. Neto, "Document-Level Sentiment Classification: An Empirical Comparison Between SVM and ANN," Expert Systems with Applications, Vol. 40, No. 2, pp. 621-633, Feb 2013. DOI: 10.1016/j.eswa.2012.07.059
  13. F. Corea, "Can Twitter Proxy the Investors' Sentiment? The Case for The Technology Sector," Big Data Research, Vol. 4, pp. 70-74, Jun 2016. DOI: 10.1016/j.bdr.2016.05.001
  14. Y. Ruan, A. Durresi, and L. Alfantoukh, "Using Twitter Trust Network for Stock Market Analysis," Knowledge-Based Systems, Vol. 145, pp. 207-218, Apr 2018. DOI: 10.1016/j.knosys.2018.01.016
  15. M. Ghiassi, J. Skinner, and D. Zimbra, "Twitter Brand Sentiment Analysis: A hybrid System Using N-Gram Analysis and Dynamic Artificial Neural Network," Expert Systems with Applications, Vol. 40, No. 16, pp. 6266-6282, Nov 2013. DOI: 10.1016/j.eswa.2013.05.057
  16. G. Wang, J. Sun, J. Ma, K. Xu, and J. Gu, "Sentiment Classification: The Contribution of Ensemble Learning," Decision Support Systems, Vol. 57, pp. 77-93, Jan 2014. DOI: 10.1016/j.dss.2013.08.002
  17. S. Yoo, J. Song, & O. Jeong, "Social Media Contents Based Sentiment Analysis and Prediction System," Expert Systems with Applications, Vol. 105, pp. 102-111, Sep 2018. DOI: 10.1016/j.eswa.2018.03.055
  18. A. Garcia-Pablos, M. Cuadros, & G. Rigau, "W2VLDA: Almost Snsupervised System for Aspect Based Sentiment Analysis," Expert Systems with Applications, Vol. 91, pp. 127-137, Jan 2018. DOI: 10.1016/j.eswa.2017.08.049
  19. J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee, "A Particle Swarm Optimization for Economic Dispatch with Nonsmooth Cost Functions," IEEE Transactions on Power Systems, Vol. 20, No. 1, pp. 34-42, Jan 2005. DOI: 10.1109/TPWRS.2004.831275.
  20. M. Amoozegar, and B. Minaei-Bidgoli, "Optimizing Multi-Objec tive PSO Based Feature Selection Method Using a Feature Elitism Mechanism," Expert Systems with Applications, Vol. 113, pp. 499-514, Dec 2018. DOI: 10.1016/j.eswa.2018.07.013
  21. B. Xue, M. Zhang, and W. N. Browne, "Particle Swarm Optimization for Feature Selection in Classification: A Multi-Objective Approach," IEEE Transactions on Cybernetics, Vol. 43, No. 6, pp. 1656-1671, Dec 2012. DOI: 10.1109/TSMCB.2012.2227469.
  22. L. Cervante, B. Xue, M. Zhang, and L. Shang, "Binary Particle Swarm Optimisation for Feature selection: A Filter Based Approach," In 2012 IEEE Congress on Evolutionary Computation, pp. 1-8, 2012. DOI: 10.1109/CEC.2012.6256452.
  23. N. A. Krisshna, V. K. Deepak, K. Manikantan, and S. Ramachandran, "Face Recognition Using Transform Domain Feature Extraction And PSO-Based Feature Selection," Applied Soft Computing, Vol. 22, pp. 141-161, Sep 2014. 10.1016/j.asoc.2014.05.007
  24. N. Kushwaha, and M. Pant, "Link Based BPSO for Feature Selection in Big Data Text Clustering," Future Generation Computer Systems, Vol. 82, pp. 190-199, May 2018. DOI: 10.1016/j.future.2017.12.005
  25. Z. Wang, M. Li, and J. Li, "A Multi-Objective Evolutionary Algorithm for Feature Selection Based on Mutual Information with a New Redundancy Measure," Information Sciences, Vol. 307, pp. 73-88, Jun 2015. DOI: 10.1016/j.ins.2015.02.031
  26. A. Gaspar-Cunha, "Feature Selection Using Multi-Objective Evolutionary Algorithms: Application to Cardiac SPECT Diagnosis," In Advances in Bioinformatics, pp. 85-92, 2010. DOI: 10.1007/978-3-642-13214-8_11
  27. L. D. Vignolo, D. H. Milone, and J. Scharcanski, "Feature Selection for Face Recognition Based on Multi-Objective Evolutionary Wrappers," Expert Systems with Applications, Vol. 40, No. 13, pp. 5077-5084, Oct 2013. DOI: 10.1016/j.eswa.2013.03.032
  28. U. Mlakar, I. Fister, J. Brest, and B. Potocnik, "Multi-Objective Differential Evolution for Feature Selection in Facial Expression Recognition Systems," Expert Systems with Applications, Vol. 89, pp. 129-137, Dec 2017. DOI: 10.1016/j.eswa.2017.07.037
  29. F. Jimenez, G. Sanchez, J. M. Garcia, G. Sciavicco, and L. Miralles, "Multi-Objective Evolutionary Feature Selection for Online Sales Forecasting," Neurocomputing, Vol. 234, pp. 75-92, Apr 2017. DOI: 10.1016/j.neucom.2016.12.045
  30. Y. Zhang, D. W. Gong, X. Z. Gao, T. Tian, & X. Y. Sun, "Binary Fifferential Evolution with Self-Learning for Multi-Objective Feature Selection," Information Sciences, Vol. 507, pp. 67-85, Jan 2020. DOI: 10.1016/j.ins.2019.08.040
  31. S. Rosenthal, N. Farra, and P. Nakov, "SemEval-2017 Task 4: Sentiment Analysis in Twitter," arXiv preprint arXiv:1912.00741, 2019. DOI: 10.18653/v1/S17-2088
  32. A. Aizawa, "An Information-Theoretic Perspective of Tf-Idf Measures," Information Processing & Management, Vol. 39, No. 1, pp. 45-65, Jan 2003. DOI: 10.1016/S0306-4573(02)00021-3
  33. S. Arlot, and A. Celisse, "A Survey of Cross-Validation Procedures for Model Selection,". Statistics Surveys, Vol. 4, pp. 40-79, 2010. DOI: 10.1214/09-SS054