• Title/Summary/Keyword: Machine Learning #2

검색결과 1,718건 처리시간 0.026초

Machine Learning based Bandwidth Prediction for Dynamic Adaptive Streaming over HTTP

  • Yoo, Soyoung;Kim, Gyeongryeong;Kim, Minji;Kim, Yeonjin;Park, Soeun;Kim, Dongho
    • 한국정보기술학회 영문논문지
    • /
    • 제10권2호
    • /
    • pp.33-48
    • /
    • 2020
  • By Digital Transformation, new technologies like ML (Machine Learning), Big Data, Cloud, VR/AR are being used to video streaming technology. We choose ML to provide optimal QoE (Quality of Experience) in various network conditions. In other words, ML helps DASH in providing non-stopping video streaming. In DASH, the source video is segmented into short duration chunks of 2-10 seconds, each of which is encoded at several different bitrate levels and resolutions. We built and compared the performances of five prototypes after applying five different machine learning algorithms to DASH. The prototype consists of a dash.js, a video processing server, web servers, data sets, and five machine learning models.

Wine Quality Prediction by Using Backward Elimination Based on XGBoosting Algorithm

  • Umer Zukaib;Mir Hassan;Tariq Khan;Shoaib Ali
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.31-42
    • /
    • 2024
  • Different industries mostly rely on quality certification for promoting their products or brands. Although getting quality certification, specifically by human experts is a tough job to do. But the field of machine learning play a vital role in every aspect of life, if we talk about quality certification, machine learning is having a lot of applications concerning, assigning and assessing quality certifications to different products on a macro level. Like other brands, wine is also having different brands. In order to ensure the quality of wine, machine learning plays an important role. In this research, we use two datasets that are publicly available on the "UC Irvine machine learning repository", for predicting the wine quality. Datasets that we have opted for our experimental research study were comprised of white wine and red wine datasets, there are 1599 records for red wine and 4898 records for white wine datasets. The research study was twofold. First, we have used a technique called backward elimination in order to find out the dependency of the dependent variable on the independent variable and predict the dependent variable, the technique is useful for predicting which independent variable has maximum probability for improving the wine quality. Second, we used a robust machine learning algorithm known as "XGBoost" for efficient prediction of wine quality. We evaluate our model on the basis of error measures, root mean square error, mean absolute error, R2 error and mean square error. We have compared the results generated by "XGBoost" with the other state-of-the-art machine learning techniques, experimental results have showed, "XGBoost" outperform as compared to other state of the art machine learning techniques.

An Introduction of Machine Learning Theory to Business Decisions

  • Kim, Hyun-Soo
    • 한국경영과학회지
    • /
    • 제19권2호
    • /
    • pp.153-176
    • /
    • 1994
  • In this paper we introduce machine learning theory to business domains for business decisions. First, we review machine learning in general. We give a new look on a previous framework, version space approach, and we introduce PAC (probably approximately correct) learning paradigm which has been developed recently. We illustrate major results of PAC learning with business examples. And then, we give a theoretical analysis is decision tree induction algorithms by the frame work of PAC learning. Finally, we will discuss implications of learning theory toi business domains.

  • PDF

Deep Learning-based Delinquent Taxpayer Prediction: A Scientific Administrative Approach

  • YongHyun Lee;Eunchan Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권1호
    • /
    • pp.30-45
    • /
    • 2024
  • This study introduces an effective method for predicting individual local tax delinquencies using prevalent machine learning and deep learning algorithms. The evaluation of credit risk holds great significance in the financial realm, impacting both companies and individuals. While credit risk prediction has been explored using statistical and machine learning techniques, their application to tax arrears prediction remains underexplored. We forecast individual local tax defaults in Republic of Korea using machine and deep learning algorithms, including convolutional neural networks (CNN), long short-term memory (LSTM), and sequence-to-sequence (seq2seq). Our model incorporates diverse credit and public information like loan history, delinquency records, credit card usage, and public taxation data, offering richer insights than prior studies. The results highlight the superior predictive accuracy of the CNN model. Anticipating local tax arrears more effectively could lead to efficient allocation of administrative resources. By leveraging advanced machine learning, this research offers a promising avenue for refining tax collection strategies and resource management.

Underwater Acoustic Research Trends with Machine Learning: General Background

  • Yang, Haesang;Lee, Keunhwa;Choo, Youngmin;Kim, Kookhyun
    • 한국해양공학회지
    • /
    • 제34권2호
    • /
    • pp.147-154
    • /
    • 2020
  • Underwater acoustics that is the study of the phenomenon of underwater wave propagation and its interaction with boundaries, has mainly been applied to the fields of underwater communication, target detection, marine resources, marine environment, and underwater sound sources. Based on the scientific and engineering understanding of acoustic signals/data, recent studies combining traditional and data-driven machine learning methods have shown continuous progress. Machine learning, represented by deep learning, has shown unprecedented success in a variety of fields, owing to big data, graphical processor unit computing, and advances in algorithms. Although machine learning has not yet been implemented in every single field of underwater acoustics, it will be used more actively in the future in line with the ongoing development and overwhelming achievements of this method. To understand the research trends of machine learning applications in underwater acoustics, the general theoretical background of several related machine learning techniques is introduced in this paper.

문학 텍스트를 활용한 머신러닝 언어모델 구현 (Machine Learning Language Model Implementation Using Literary Texts)

  • 전현구;정기철;권경아;이인성
    • 문화기술의 융합
    • /
    • 제7권2호
    • /
    • pp.427-436
    • /
    • 2021
  • 본 연구의 목적은 문학 텍스트를 학습한 머신 러닝 언어 모델을 구현하는데 있다. 문학 텍스트는 일상 대화문처럼 질문에 대한 답변이 분명하게 구분되지 않을 때가 많고 대명사와 비유적 표현, 지문, 독백 등으로 다양하게 구성되어 있다는 특징이 있다. 이런 점들이 알고리즘의 학습을 용이하지 않게 하여 문학 텍스트를 활용하는 기계 학습의 필요성을 저해시킨다. 문학 텍스트를 학습한 알고리즘이 일반 문장을 학습한 알고리즘에 비해 좀 더 인간 친화적인 상호작용을 보일 가능성이 높다. 본 논문은 '문학 텍스트를 학습한 머신 러닝 언어 모델 구현'에 관한 연구로서, 대화형 기계 학습에 문학 텍스트를 활용하는 연구에서 필수적으로 선행되어야 할 세 가지 텍스트 보정 작업을 제안한다: 대명사 처리, 대화쌍 늘리기, 데이터 증폭 등에 대한 내용으로 기계 학습이 용이하고 그 효과도 높다고 판단됩니다. 인공지능을 위한 학습용 데이터는 그 의미가 명료해야 기계 학습이 용이하고 그 효과도 높게 나타난다. 문학과 같은 특수한 장르의 텍스트를 자연어 처리 연구에 도입하는 것은 새로운 언어 학습 방식의 제안과 함께 머신 러닝의 학습 영역도 확장시켜 줄 것이다.

Design of a ParamHub for Machine Learning in a Distributed Cloud Environment

  • Su-Yeon Kim;Seok-Jae Moon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제16권2호
    • /
    • pp.161-168
    • /
    • 2024
  • As the size of big data models grows, distributed training is emerging as an essential element for large-scale machine learning tasks. In this paper, we propose ParamHub for distributed data training. During the training process, this agent utilizes the provided data to adjust various conditions of the model's parameters, such as the model structure, learning algorithm, hyperparameters, and bias, aiming to minimize the error between the model's predictions and the actual values. Furthermore, it operates autonomously, collecting and updating data in a distributed environment, thereby reducing the burden of load balancing that occurs in a centralized system. And Through communication between agents, resource management and learning processes can be coordinated, enabling efficient management of distributed data and resources. This approach enhances the scalability and stability of distributed machine learning systems while providing flexibility to be applied in various learning environments.

정보 유출 탐지를 위한 머신 러닝 기반 내부자 행위 분석 연구 (A Study on the Insider Behavior Analysis Using Machine Learning for Detecting Information Leakage)

  • 고장혁;이동호
    • 디지털산업정보학회논문지
    • /
    • 제13권2호
    • /
    • pp.1-11
    • /
    • 2017
  • In this paper, we design and implement PADIL(Prediction And Detection of Information Leakage) system that predicts and detect information leakage behavior of insider by analyzing network traffic and applying a variety of machine learning methods. we defined the five-level information leakage model(Reconnaissance, Scanning, Access and Escalation, Exfiltration, Obfuscation) by referring to the cyber kill-chain model. In order to perform the machine learning for detecting information leakage, PADIL system extracts various features by analyzing the network traffic and extracts the behavioral features by comparing it with the personal profile information and extracts information leakage level features. We tested various machine learning methods and as a result, the DecisionTree algorithm showed excellent performance in information leakage detection and we showed that performance can be further improved by fine feature selection.

Recent advances in deep learning-based side-channel analysis

  • Jin, Sunghyun;Kim, Suhri;Kim, HeeSeok;Hong, Seokhie
    • ETRI Journal
    • /
    • 제42권2호
    • /
    • pp.292-304
    • /
    • 2020
  • As side-channel analysis and machine learning algorithms share the same objective of classifying data, numerous studies have been proposed for adapting machine learning to side-channel analysis. However, a drawback of machine learning algorithms is that their performance depends on human engineering. Therefore, recent studies in the field focus on exploiting deep learning algorithms, which can extract features automatically from data. In this study, we survey recent advances in deep learning-based side-channel analysis. In particular, we outline how deep learning is applied to side-channel analysis, based on deep learning architectures and application methods. Furthermore, we describe its properties when using different architectures and application methods. Finally, we discuss our perspective on future research directions in this field.

기계학습 기반의 클라우드를 위한 센서 데이터 수집 및 정제 시스템 (Sensor Data Collection & Refining System for Machine Learning-Based Cloud)

  • 황치곤;윤창표
    • 한국정보통신학회논문지
    • /
    • 제25권2호
    • /
    • pp.165-170
    • /
    • 2021
  • 기계학습은 최근 대부분의 분야에서 적용하여 연구를 하고 있다. 이것은 기계학습의 결과가 결정된 것이 아니라 입력데이터의 학습으로 목적함수를 생성하고, 이를 통해 통하여 새로운 데이터에 대한 판단이 가능하기 때문이다. 또한, 축적된 데이터의 증가는 기계학습 결과의 정확도에 영향을 미친다. 이에 수집된 데이터는 기계학습에 중요한 요인이다. 제안하는 본 시스템은 서비스 제공을 위한 클라우드 시스템과 지역의 포그 시스템의 융합 시스템이다. 이에 클라우드 시스템은 서비스를 위한 머신러닝과 기반 구조를 제공하고, 포그 시스템은 클라우드와 사용자의 중간에 위치하여 데이터 수집 및 정제를 수행한다. 이를 적용하기 위한 데이터는 스마트기기에서 발생하는 센세 데이터로 한다. 이에 적용된 기계학습 기법은 분류를 위한 SVM알고리즘, 상태 인지를 위한 RNN 알고리즘을 이용한다.