• Title/Summary/Keyword: MUSCLE ACTIVATION

Search Result 941, Processing Time 0.034 seconds

Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery (가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석)

  • Lee, Ah-Reum;Piao, Youn-Jun;Kwon, Tae-Kyu;Kim, Jung-Ja
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.6
    • /
    • pp.7-17
    • /
    • 2009
  • The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

Characteristics of ROM and EMG to Balance Training in Unstable Plate System: Primary Study (균형 훈련 플레이트 시스템을 이용한 생체역학적 특성 연구)

  • Jun, SungChul;Lim, HeeChul;Lee, ChangHyung;Kim, TaeHo;Jung, DukYoung;Chun, KeyoungJin
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.235-239
    • /
    • 2015
  • The purpose of this study was to investigate the unstable plate system for the advanced balance ability. 7 male volunteers (age $33.7{\pm}1.2$ years, height $174.7{\pm}3.8cm$, weight $86.0{\pm}3.6kg$, BMI $28.2{\pm}2.0kg/m^2$) performed the partial squat motion on the shape of CAP type(${\cap}$) and BOWL type(${\cup}$) plate system. The range of motion (ROM) and muscle activation were acquired by the motion analysis system and the EMG system. Results of ROMs of the CAP type plate system were shown the widely range of the deviation in the ankle joint on the sagittal plane (sagittal plane - hip joint $10.7^{\circ}$ > $5.4^{\circ}$, knee joint $16.3^{\circ}$ > $6.4^{\circ}$, ankle joint $18.8^{\circ}$ > $6.3^{\circ}$ ; transverse plane - hip joint $3.5^{\circ}$ > $1.8^{\circ}$, knee joint $5.3^{\circ}$ > $3.4^{\circ}$, ankle joint $11.3^{\circ}$ > $5.3^{\circ}$ ; frontal plane - hip joint $0.9^{\circ}$ > $0.5^{\circ}$, knee joint $0.8^{\circ}$ > $0.6^{\circ}$, ankle joint $4.8^{\circ}$ > $3.7^{\circ}$). Muscle activation results of the CAP type plate system were indicated higher in major muscles for balance performance than the BOWL type plate system (vastus lateralis 0.90 > 0.62, peroneus longus 0.49 > 0.21, biceps femoris 0.38 > 0.14, gastrocnemius 0.11 > 0.05). These findings may indicate that the CAP type plate system would expect better effectiveness in perform the balance training. This paper is primary study for developing balance skills enhancement training device.

Cooperation of $G{\beta}$ and $G_{\alpha}q$ Protein in Contractile Response of Cat Lower Esophageal Sphincter (LES)

  • Sohn, Uy-Dong;Lee, Tai-Sang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.6
    • /
    • pp.349-355
    • /
    • 2003
  • We previously shown that LES contraction depends on $M_3$ receptors linked to PTX insensitive $G_q$ protein and activation of PLC. This results in production of $IP_3$, which mediates calcium release, and contraction through a CaM dependent pathway. In the esophagus ACh activates $M_2$ receptors linked to PTX sensitive $G_{i3}$ protein, resulting in activation of PLD, presumably, production of DAG. We investigated the role of PLC isozymes which can be activated by $G_q$ or $G{\beta}$ protein on ACh-induced contraction in LES and esophagus. Immunoblot analysis showed the presence of 3 types of PLC isozymes, $PLC-{\beta}1$, $PLC-{\beta}3$, and $PLC-{\gamma}1$, but not $PLC-{\beta}2$, $PLC-{\beta}4$, $PLC-{\gamma}2$, $PLC-{\delta}1$, and $PLC-{\delta}2$ from both LES and esophageal muscle. ACh produced contraction in a dose dependent manner in LES and esophageal muscle cells obtained by enzymatic digestion with collagenase. $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody incubation reduced contraction in response to ACh in LES but not in esophageal permeabilized cells, but $PLC-{\gamma}1$ antibody incubation did not have an inhibitory effect. The inhibition by $PLC-{\beta}1$ or $PLC-{\beta}3$ antibody on Ach-induced contraction was antibody concentration dependent. The combination with $PLC-{\beta}_1$ and $PLC-{\beta}_3$ antibody completely abolished the contraction, suggesting that $PLC-{\beta}1$ and $PLC-{\beta}3$ have a synergism to inhibit the contraction in LES. $PLC-{\beta}1$, -${\beta}3$ or -${\gamma}1$ antibody did not reduce the contraction of LES cells in response to DAG ($10^{-6}$ M), suggesting that this isozyme of PLC may not activate PKC. When $G_{q/11}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}3$, but not of PLC ${\beta}_1$ was additive (Fig. 6). In contrast, when $G_{\beta}$ antibody was incubated, the inhibitory effect of the incubation of PLC ${\beta}_1$, but not of PLC ${\beta}_3$ was additive. This data suggest that $G_{q/11}$/11 or $G{\beta}$ may activate cooperatively different PLC isozyme, $PLC{\beta}_1$ or $PLC{\beta}_3$ respectively.

TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways

  • Jung, Jong Gab;Yi, Sang-A;Choi, Sung-E;Kang, Yup;Kim, Tae Ho;Jeon, Ja Young;Bae, Myung Ae;Ahn, Jin Hee;Jeong, Hana;Hwang, Eun Sook;Lee, Kwan-Woo
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1037-1043
    • /
    • 2015
  • The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. 1 TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-$phosphoelF2{\alpha}$-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance.

Protective Effects of Medicinal Herbal Mixture (HME) through Akt/FoxO3 Signal Regulation in Oxidative Damaged C2C12 Myotubes (C2C12 myotube의 산화적 손상에 대한 혼합 한약재 추출물(HME)의 Akt/FoxO3 신호 조절을 통한 보호 효과)

  • Kim, So Young;Choi, Moon-Yeol;Lee, Un Tak;Choo, Sung Tae;Kim, Mi Ryeo
    • The Korea Journal of Herbology
    • /
    • v.37 no.4
    • /
    • pp.31-38
    • /
    • 2022
  • Objectives : In this study, we investigated the synergistic protective effects of medicinal herbal mixture (HME) including Mori Ramulus (MR), Acanthopanacis Cortex (AC), Eucommiae Cortex (EC), and Black soybean (BS) in C2C12 cells, mouse myoblasts. Methods : Effects of HME on cell viability of C2C12 myoblasts were monitored by MTT assay. Anti-atrophic activity of HME was determined in myoblasts and myotubes under oxidative stress by H2O2. C2C12 myoblasts were differentiated into myotubes in a medium containing 2% horse serum for 6 days. After that, we measured that expression of MyoD and myogenine, the myogenic regulatory factors, to identify the mechanism of inhibiting muscle atophy after HME treatment. In addition, suppression of phosphorylation of Akt, FoxO3a and MARF-1, transcription factors of degradation proteins were analyzed via western blotting. Results : As a result of MTT, HME there was no show cytotoxicity up to a concentration of 1 mg/ml. The cytoprotective effects on oxidative stressed myoblast and myotube was better in HME extract than those of MR, AC, EU, and BS, respectively. HME treatment in Myotube induced by oxidative stress after H2O2 treatment increased Myo D, Myogenine activation, and Akt, FoxO3a phosphorylation and decreased expression of MuRF-1. As the results, HME has synergistic effects on protection against proteolysis of C2C12 myotubes through activation of the Akt signaling pathway under oxidative stress. Conclusions : These results suggest that HME may also be useful as a preventing and treating material for skeletal muscle atrophy caused by age-related diseases.

Thermogenesis and Motor Recruitment of the Pectoral Muscle During Shivering in Arousing Bats Murina Leucogaster

  • Choi, In-Ho;Lee, Youn Sun;Oh, Yung Keun;Jung, Noh-Pal;Gwag, Byoung Joo;Shin, Hyung-Cheul
    • Animal cells and systems
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • Temperate-resident bats exhibit a circadian cycle of torpor and arousal In summer. The physiological role and selective advantage of torpor as an energy saving mechanism have been received much attention by hibernation biologists. However, despite the significance of the recovering euthermic function, the arousal process and mechanism in these animals have been poorly addressed. In this study, we investigated thermogenic and motor activities of a local bat species Murina leucogaster during arousal by simultaneously examining oxygen consumption rate, body temperature ($T_b$) and pectoral electromyography (EMG). We found that Tb of the torpid bats (12-14$^{\circ}C$) was augmented slowly by nonshivering mechanism during the initial awakening phase. The pectoral shivering, gauged by EMG activity, occurred between 17$^{\circ}C$ and 38$^{\circ}C$. Over this Tb range of shivering, heat was produced at a rate of 0.145 kcal $kg^{-1}\;min^{-1}$ to raise 1$^{\circ}C$ $T_b$ per min. Shivering was most intensive at 30-35$^{\circ}C$ where both EMG amplitude and spike frequency were the highest. Activation of the pectoral myofibers seemed to be controlled in a manner that motor units were recruited from smaller to larger sizes, with greater synchronization, as muscle shivering became intensive with increasing $T_b$.

  • PDF

The Activity of Hypertension-related Protein Kinase C and the Relationship of Physical Therapy (고혈압-연관 단백질 부활효소 C의 활성과 물리치료의 상관성)

  • Kim, Jung-Hwan
    • The Journal of Korean Physical Therapy
    • /
    • v.20 no.3
    • /
    • pp.61-68
    • /
    • 2008
  • Purpose: Protein kinase C (PKC) is a member of a family of serine/threonine kinases that are activated by diacylglycerol (DG) and PKC stimulants. PKC play a key role in signal transduction, including muscle contraction, cell migration, apoptosis, cell proliferation and differentiation. However, the mechanism relating mitogen-activated protein kinases (MAPKs) and PKC, especially in the volume-dependent hypertensive state, remains unclear. Methods: In the present study, I investigated the relationship between PKC and MAPKs for isometric contraction, PKC translocation, and enzymatic activity from normotensive sham-operated rats (NSR) and aldosterone-analogue deoxycorticosterone acetate (DOCA) hypertensive rats (ADHR). Results: Systolic blood pressure was significantly increased in ADHR than in NSR. Physiological salt solution (PSS)-induced resting tension and the intracellular $Ca^{2+}$ concentration ([$Ca^{2+}{_i}$]) were different in the ADHR and NSR. The expression of PKC$\alpha$, PKC$\beta$II, PKC$\delta$, PKC$\varepsilon$ and PKC$\xi$ were different between the cytoplasmic and membranous fractions. However, expression of the PKC isoforms did not differ for the ADHR and NSR. The use of 12-deoxyphorbol 13-isobutyrate (DPB, a PKC stimulant) induced isometric contraction in $Ca^{2+}$-free medium, which was diminished in muscle strips from ADHR as compared to NSR. Increased vasoconstriction and phosphorylation induced by the use of 1 ${\mu}$M DPB were inhibited by treatment with 10 ${\mu}$M PD098059 and 10 ${\mu}$M SB203580, inhibitors of extracellular-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK from ADHR, respectively. Conclusion: These results suggest that the development of aldosterone analogue-induced hypertension is associated with an altered blood pressure, resting tension, [$Ca^{2+}{_i}$], and that the $Ca^{2+}$-independent contraction evoked by PKC stimulants is due to the activation of ERK1/2 and p38 MAPK in volume-dependent hypertension. Therefore, it is suggested that PKC activity affects volume-dependent hypertension and the need to develop cardiovascular disease-specialized physical therapy.

  • PDF

Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

  • Shin, Sung Eun;Li, Hongliang;Kim, Han Sol;Kim, Hye Won;Seo, Mi Seon;Ha, Kwon-Soo;Han, Eun-Taek;Hong, Seok-Ho;Firth, Amy L.;Choi, Il-Whan;Bae, Young Min;Park, Won Sun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.225-232
    • /
    • 2017
  • We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent $K^+$ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent $IC_{50}$ value of $2.86{\pm}0.52{\mu}M$ and a Hill coefficient of $0.77{\pm}0.1$. Although application of nortriptyline did not change the activation curve, nortriptyline shifted the inactivation current toward a more negative potential. Application of train pulses (1 or 2 Hz) did not change the nortriptyline-induced Kv channel inhibition, suggesting that the effects of nortiprtyline were not use-dependent. Preincubation with the Kv1.5 and Kv2.1/2.2 inhibitors, DPO-1 and guangxitoxin did not affect nortriptyline inhibition of Kv channels. From these results, we concluded that nortriptyline inhibited Kv channels in a concentration-dependent and state-independent manner independently of serotonin reuptake.

Epimedium koreanum Nakai Water Extract Regulates Hepatic Stellate Cells Activation through Inhibition of Smad Signaling Pathway (음양곽(淫羊藿) 열수 추출물의 Smad 신호 억제를 통한 간성상세포의 활성 조절)

  • Jung, Ji Yun;Min, Byung-Gu;Park, Chung A;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Objectives : In Traditional Korean Medicine, Epimedium koreanum Nakai has diverse pharmacological activities to treat impotence, forgetfulness, cataract and exophthalmos. Present study investigated anti-fibrogenic effects of E. koreanum water extract (EKE) in hepatic stellate cells (HSCs). Methods : To study anti-fibrogenic effects of EKE, LX-2 cells, a human immortalized HSCs, were pre-treated with $3-300{\mu}g/mL$ of EKE, and then subsequently exposed to 5 ng/mL of transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$). Expression level of ${\alpha}-smooth$ muscle actin was determined by immunoblot analysis. Phosphorylation of Smad, transactivation of Smad, and expression of plasminogen activator inhibitor-1 (PAI-1) were monitored to investigate the effect of EKE on $TGF-{\beta}1-mediated$ signaling pathway. Results : Up to $100{\mu}g/mL$, EKE did not show any cytotoxicity on LX-2 cells. Pre-treatment of EKE ($100{\mu}g/mL$) significantly inhibited ${\alpha}-smooth$ muscle actin expression induced by $TGF-{\beta}1$. In addition, EKE significantly decreased Smad2 and Smad3 phosphorylations, Smad binding element-driven luciferase activity and PAI-1 expression by $TGF-{\beta}1$. Of three flavonoid compounds found in EKE, only quercertin ($30{\mu}M$) attenuated $TGF-{\beta}1-mediated$ PAI-1 expression. Conclusion : These results suggest that EKE has an ability to suppress fibrogenic process in HSCs via inhibition of $TGF-{\beta}1/Smad$ signaling pathway.

Effect of Shoulder Position on Scapular Muscle Activity during Scapular Protraction

  • Yun, Sung Joon;Kim, Moon-Hwan;Weon, Jong-Hyuck
    • The Journal of Korean Physical Therapy
    • /
    • v.32 no.3
    • /
    • pp.157-162
    • /
    • 2020
  • Purpose: This study was to evaluate several tasks performed at a high intensity in terms of their ability to elicit EMG activity in the serratus anterior by comparing the EMG activities of the serratus anterior, upper trapezius, and lower trapezius muscles during six tasks combined shoulder flexion with rotation. Methods: Fifteen healthy males were recruited to this study. Each subject was instructed to assume a sitting position without back support and asked to flex (90° or 120°) the right shoulder and protract the scapula in the sagittal plane with maximal external rotation; to assume a neutral position; or to internally rotate the glenohumeral joint. The EMG data were collected from the serratus anterior (SA), upper trapezius (UT), and lower trapezius (LT) muscles were normalized to maximum voluntary isometric contraction. The UT/LT and UT/SA muscle activity ratios in each task were assessed by calculating the surface EMG. Data were analyzed by two-way repeated-measures analysis of variance, with the level of significance set at p<0.05. Results: The results of this study, shoulder flexion with external rotation resulted in low upper trapezius/serratus anterior and upper trapezius/lower trapezius ratios and a relatively high level of serratus anterior activation. Conclusion: Shoulder flexion with external rotation used herein may be considered as important for clinical interventions aimed at selectively increasing SA strengthen and clinical selection of exercises for improving glenohumeral joint and scapulothoracic control.