Analysis on Relation between Rehabilitation Training Movement and Muscle Activation using Weighted Association Rule Discovery

가중연관규칙 탐사를 이용한 재활훈련운동과 근육 활성의 연관성 분석

  • Lee, Ah-Reum (Department of Healthcare Engineering, Graduate School, Chonbuk National University) ;
  • Piao, Youn-Jun (Chonbuk National University Automobile parts & mold technology Innovation Center, CATIC) ;
  • Kwon, Tae-Kyu (Center for healthcare technology development) ;
  • Kim, Jung-Ja (Division of Biomedical Engineering, Chonbuk National University)
  • 이아름 (전북대학교 헬스케어공학과) ;
  • 박용군 (전북대학교 자동차부품 금영 기술혁신센터) ;
  • 권대규 (헬스케어기술개발사업단) ;
  • 김정자 (전북대학교 바이오메디컬공학부)
  • Published : 2009.11.25

Abstract

The precise analysis of exercise data for designing an effective rehabilitation system is very important as a feedback for planing the next exercising step. Many subjective and reliable research outcomes that were obtained by analysis and evaluation for the human motor ability by various methods of biomechanical experiments have been introduced. Most of them include quantitative analysis based on basic statistical methods, which are not practical enough for application to real clinical problems. In this situation, data mining technology can be a promising approach for clinical decision support system by discovering meaningful hidden rules and patterns from large volume of data obtained from the problem domain. In this research, in order to find relational rules between posture training type and muscle activation pattern, we investigated an application of the WAR(Weishted Association Rule) to the biomechanical data obtained mainly for evaluation of postural control ability. The discovered rules can be used as a quantitative prior knowledge for expert's decision making for rehabilitation plan. The discovered rules can be used as a more qualitative and useful priori knowledge for the rehabilitation and clinical expert's decision-making, and as a index for planning an optimal rehabilitation exercise model for a patient.

효과적인 재활 시스템을 구상하는데 있어서 훈련 데이터의 정교한 분석은 다음 단계 훈련을 위한 피드백 자료로서 매우 중요하다. 현재 다양한 생체 역학적 실험을 통해 인간의 운동 능력을 평가하고 이로부터 생성된 데이터의 분석을 위한 객관적이고 신뢰성 있는 연구결과들이 발표되고 있다. 그러나 대부분의 기존 연구들은 기초 통계적인 방법에 근거한 정량분석만을 수행함으로써, 획득된 정보를 임상에 적용 하는데 있어서는 충분한 신뢰성을 보장할 수 없다. 데이터마이닝은 대용량 데이터에 들어있는 숨겨진 규칙과 패턴을 탐사함으로써 임상 데이터에 숨어있는 의미 있는 정보추출에 성공적으로 사용되고 있으며, 특히 임상 연구 분야에서는 훌륭한 의사 결정 지원 시스템으로서 점점 그 사용이 증가되고 있다. 본 연구에서는 신뢰성 있는 자세 제어 능력(Postural control ability) 평가를 위해서 측정된 훈련 데이터에 가중연관규칙 탐사를 적용하여 자세 훈련 유형에 따른 근육 활성 패턴과의 연관성을 분석, 효율적인 재활 훈련 규칙을 탐사하였다. 탐사된 규칙은 재활 및 임상 전문가의 의사결정에 더욱 정성적이고 유용한 선험적 지식으로 사용 될 수 있으며, 이를 근거로 환자 맞춤형 최적의 재활 훈련 모델을 구상하기 위한 지표로서 사용될 수 있다.

Keywords

References

  1. R. SriKant and R. Agrawal, 'Mining Generalized Association Rules', In Proceedings of the 21st VLDB conference, Zurich, Swizerland, 1995. https://doi.org/10.1016/S0167-739X(97)00019-8
  2. K. Y. Jung, “ Optimal Associateive Neighborhood Mining using Representative Attribute”, IEEE, Vol. 43, pp.50-57, 2006
  3. W. Wang, J. Yang P. Yu, 'Efficient mining of weighted association rules(WAR)', Proc. the ACM SIGKDD Conf. on Knowledge Discovery and Data Mining, pp. 270-274, 2000 https://doi.org/10.1145/347090.347149
  4. F. Tao, 'Mining binary relationships from transaction data in weighted settings', PhD Thesis, School of Computer Science, Queen's University Belfast, UK, 2003.
  5. Kim, H. Ceong, Y. Won, 'Weighted association rule mining for item groups with different properties and risk assessment for networked systems', IEICE Trans. Information and Systems, Vol. E85, No. 1, 2002, pp. 1-7
  6. G. Vannozzi, A. Cereatti, C. Mazza, F. Benvenuti, U. Della Croce, 'Extraction of information on elder motor ability from clinical and biomechanical data through data mining', Journal of computer methods and programs in biomedicine, Vol 88, pp. 85-94, 2007 https://doi.org/10.1016/j.cmpb.2007.07.007
  7. T. Imamura, S. Matsumoto, Yo. Kanagawa, B. Tajima, S. Matsuya, M. Furue, H. Oyama, 'A technique for identifying three diagnostic findings using association analysis', M
  8. W. T. Hwang, D. S. Kim, 'Improved Association Rule Mining by Modified Trimming'' IEEE, Vol. 45, pp.15-21. 2008ed Bio Eng Comput, Vol 45, pp. 51-59, 2007
  9. F. B. Horak and L. M. Nashner, “Central Programming of Postural Movements: Adaptation to Altered Support Surface Configurations,” J. Neurophysiol, Vol. 55, pp. 1369-1381, 1986
  10. A. Shumway-Cook, D. Anson, and S. Haller, 'Effect on Balance and Locomotion in Hemiparetic Adult,' Arch. Phys. Med. Rehabil. Vol. 69, pp. 395-400, 1989
  11. J. F. Lehmann, S. Boswell, R. Price, A. Burleigh, B. J. DeLateur, K. M. Jaffe, and K. Herling, 'Quantitative Evaluation of Sway as An Indicator of Functional Balance in Past Traumatic Brain Injury,' Arch Phys. Med. Rehabil., Vol. 70, pp. 955-962, 1990
  12. D. A. C. M. Commissaris, P. H. J. A. Nieuwenhuihzen, S. Overeem, A. Vosde, J. E. J. Duysens, and B. R. Bleom, 'Dynamic Posturography using A New Movable Multidirectional Platform Driven by Gravity,' J. Neuroscience Methods, Vol. 113, pp. 3-84, 2003
  13. M. E. Howard, P. W. Cawley, and G. M. Losse, 'Correlation of Static and Dynamic Balance Deficit to Injury History, Perform ancecriteria and Physical finding in 595 Elite College Football Players,' 8th Annual AOSSM Specialty Day, Orlando, FI, Feb. 1995
  14. P. A. Goldie, T.M. Bach, and O. M. Evans, 'Force platform measures for evaluating postural control: reliability an validity', Arch. Phys. Med. Rehabil., Vol. 70, pp. 510-517, 1989
  15. G. Vannozzi, A. Cereatti, C. Mazza, F. Benvenuti, U. Della Croce, 'Extraction of information on elder motor ability from clinical and biomechanical data through data mining', Journal of computer methods and programs in biomedicine, Vol 88, pp. 85-94, 2007 https://doi.org/10.1016/j.cmpb.2007.07.007
  16. J.J. Berman. 'Confidentiality issues for medical data miners', Artif. Intell. Med. ,Vol. 26(1-2), pp. 25-36, 2002 https://doi.org/10.1016/S0933-3657(02)00050-7
  17. omoaki Imamura, Shinya Matsumoto, Yoshiyuki Kanagawa, Bunichi Tajima, Shiro Matsuya, Masutaka Furue, Hiroshi Oyama, 'A technique for identifying three diagnostic findings using association analysis', Med Bio Eng Comput, Vol 45, pp. 51-59, 2007 https://doi.org/10.1007/s11517-006-0121-6
  18. S. Wu, Y.X. Gong, C. Xue, Z. Zhi, 'Extraction of MUAP from Neng Signal using Self-organization Competing NN', Dept of Electronic Science & Tech, Univ. of Science & Tech. of China, Hefei, 2001
  19. D. Zennaro, P. Welling, V.M. Koch, G.S. Moschytz, T. Laubli, “A software package for the decomposition of long-term multichannel EMG signals using wavelet coefficients”, IEEE Trans. Biomed. Eng. Vol. 50, pp. 58-69, 2003 https://doi.org/10.1109/TBME.2002.807321
  20. C. D. Katsis, Y. Goletsis, A. Likas, D.I. Fotiadis, I. Sarmas, 'A novel method for automated EMG decomposition and MUAP classification', Artif. Intell. Med. Vol. 37, pp. 55-64, 2006 https://doi.org/10.1016/j.artmed.2005.09.002
  21. iegbert Krafczyk, Simon Tietze, Walter Swoboda, Peter Valkovic, Thomas Brandt, 'Artificial Neural Network: A new diagnostic posturographic tool for disorders of stance', Clinical Neurophysiology, Vol. 117, pp. 1692- 1698, 2006 https://doi.org/10.1016/j.clinph.2006.04.022
  22. Michael E. Hahn, Arthur M. Farley, Victor Linc, Li-Shan Chou, 'Neural network estimation of balance control during locomotion', Journal of Biomechanics, Vol. 38, pp. 717-724, 2005 https://doi.org/10.1016/j.jbiomech.2004.05.012
  23. M. Klemettinen, H. Mannila, P. Ronkainen, H. Toivonen, and A.I. Verkamo, 'Finding Iteresting Rules from Large Sets of Discovered Association Rules', Proc. of the 3rd Intl. Conf. on Information and Knowledge Management, pp. 401-407, 1994