DOI QR코드

DOI QR Code

Nortriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in coronary arterial smooth muscle cells

  • Shin, Sung Eun (Department of Physiology, Kangwon National University School of Medicine) ;
  • Li, Hongliang (Department of Physiology, Kangwon National University School of Medicine) ;
  • Kim, Han Sol (Department of Physiology, Kangwon National University School of Medicine) ;
  • Kim, Hye Won (Department of Physiology, Kangwon National University School of Medicine) ;
  • Seo, Mi Seon (Department of Physiology, Kangwon National University School of Medicine) ;
  • Ha, Kwon-Soo (Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine) ;
  • Han, Eun-Taek (Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine) ;
  • Hong, Seok-Ho (Department of Internal Medicine, Kangwon National University School of Medicine) ;
  • Firth, Amy L. (Department of Pulmonary, Critical Care and Sleep Medicine, University of Southern California, Keck School of Medicine) ;
  • Choi, Il-Whan (Department of Microbiology, Inje University College of Medicine) ;
  • Bae, Young Min (Department of Physiology, Konkuk University School of Medicine) ;
  • Park, Won Sun (Department of Physiology, Kangwon National University School of Medicine)
  • Received : 2016.11.14
  • Accepted : 2016.12.07
  • Published : 2017.03.01

Abstract

We demonstrated the effect of nortriptyline, a tricyclic antidepressant drug and serotonin reuptake inhibitor, on voltage-dependent $K^+$ (Kv) channels in freshly isolated rabbit coronary arterial smooth muscle cells using a whole-cell patch clamp technique. Nortriptyline inhibited Kv currents in a concentration-dependent manner, with an apparent $IC_{50}$ value of $2.86{\pm}0.52{\mu}M$ and a Hill coefficient of $0.77{\pm}0.1$. Although application of nortriptyline did not change the activation curve, nortriptyline shifted the inactivation current toward a more negative potential. Application of train pulses (1 or 2 Hz) did not change the nortriptyline-induced Kv channel inhibition, suggesting that the effects of nortiprtyline were not use-dependent. Preincubation with the Kv1.5 and Kv2.1/2.2 inhibitors, DPO-1 and guangxitoxin did not affect nortriptyline inhibition of Kv channels. From these results, we concluded that nortriptyline inhibited Kv channels in a concentration-dependent and state-independent manner independently of serotonin reuptake.

Keywords

References

  1. van den Broek WW, Mulder PG, van Os E, Birkenhager TK, Pluijms E, Bruijn JA. Efficacy of venlafaxine compared with tricyclic antidepressants in depressive disorder: a meta-analysis. J Psychopharmacol. 2009;23:708-713. https://doi.org/10.1177/0269881108089821
  2. von Wolff A, Holzel LP, Westphal A, Harter M, Kriston L. Selective serotonin reuptake inhibitors and tricyclic antidepressants in the acute treatment of chronic depression and dysthymia: a systematic review and meta-analysis. J Affect Disord. 2013;144:7-15. https://doi.org/10.1016/j.jad.2012.06.007
  3. Molyneaux E, Howard LM, McGeown HR, Karia AM, Trevillion K. Antidepressant treatment for postnatal depression. Cochrane Database Syst Rev. 2014;(9):CD002018.
  4. Pomara N, Shao B, Choi SJ, Tun H, Suckow RF. Sex-related differences in nortriptyline-induced side-effects among depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:1035-1048. https://doi.org/10.1016/S0278-5846(01)00175-0
  5. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268:C799-822. https://doi.org/10.1152/ajpcell.1995.268.4.C799
  6. Standen NB, Quayle JM. $K^{+}$ channel modulation in arterial smooth muscle. Acta Physiol Scand. 1998;164:549-557. https://doi.org/10.1046/j.1365-201X.1998.00433.x
  7. Ko EA, Han J, Jung ID, Park WS. Physiological roles of $K^{+}$ channels in vascular smooth muscle cells. J Smooth Muscle Res. 2008;44:65-81. https://doi.org/10.1540/jsmr.44.65
  8. Ko EA, Park WS, Firth AL, Kim N, Yuan JX, Han J. Pathophysiology of voltage-gated $K^{+}$ channels in vascular smooth muscle cells: modulation by protein kinases. Prog Biophys Mol Biol. 2010;103:95-101. https://doi.org/10.1016/j.pbiomolbio.2009.10.001
  9. Bae H, Lee D, Kim YW, Choi J, Lee HJ, Kim SW, Kim T, Noh YH, Ko JH, Bang H, Lim I. Effects of hydrogen peroxide on voltagedependent $K^{+}$ currents in human cardiac fibroblasts through protein kinase pathways. Korean J Physiol Pharmacol. 2016;20:315-324. https://doi.org/10.4196/kjpp.2016.20.3.315
  10. Bae YM, Kim A, Kim J, Park SW, Kim TK, Lee YR, Kim B, Cho SI. Serotonin depolarizes the membrane potential in rat mesenteric artery myocytes by decreasing voltage-gated $K^{+}$ currents. Biochem Biophys Res Commun. 2006;347:468-476. https://doi.org/10.1016/j.bbrc.2006.06.116
  11. Archer SL, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite RE, Michelakis ED. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J. 2001;15:1801-1803. https://doi.org/10.1096/fj.00-0649fje
  12. Cox RH, Folander K, Swanson R. Differential expression of voltagegated $K^{+}$ channel genes in arteries from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension. 2001;37:1315-1322. https://doi.org/10.1161/01.HYP.37.5.1315
  13. Liu Y, Terata K, Rusch NJ, Gutterman DD. High glucose impairs voltage-gated $K^{+}$ channel current in rat small coronary arteries. Circ Res. 2001;89:146-152. https://doi.org/10.1161/hh1401.093294
  14. Snyders DJ, Yeola SW. Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. Circ Res. 1995;77:575-583. https://doi.org/10.1161/01.RES.77.3.575
  15. Park WS, Ko JH, Kim N, Son YK, Kang SH, Warda M, Jung ID, Park YM, Han J. Increased inhibition of inward rectifier $K^{+}$ channels by angiotensin II in small-diameter coronary artery of isoproterenolinduced hypertrophied model. Arterioscler Thromb Vasc Biol. 2007;27:1768-1775. https://doi.org/10.1161/ATVBAHA.107.143339
  16. Malmgren R, Aberg-Wistedt A, Bertilsson L. Serotonin uptake inhibition during treatment of depression with nortriptyline caused by parent drug and not by 10-hydroxymetabolites. Psychopharmacology (Berl). 1987;92:169-172.
  17. Watts SW. 5-HT in systemic hypertension: foe, friend or fantasy? Clin Sci (Lond). 2005;108:399-412. https://doi.org/10.1042/CS20040364
  18. Pomara N, Shao B, Choi SJ, Tun H, Suckow RF. Sex-related differences in nortriptyline-induced side-effects among depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25:1035-1048. https://doi.org/10.1016/S0278-5846(01)00175-0
  19. Su S, Ohno Y, Lossin C, Hibino H, Inanobe A, Kurachi Y. Inhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline. J Pharmacol Exp Ther. 2007;320:573-580.
  20. Terstappen GC, Pula G, Carignani C, Chen MX, Roncarati R. Pharmacological characterisation of the human small conductance calcium-activated potassium channel hSK3 reveals sensitivity to tricyclic antidepressants and antipsychotic phenothiazines. Neuropharmacology. 2001;40:772-783. https://doi.org/10.1016/S0028-3908(01)00007-7
  21. Yamakawa Y, Furutani K, Inanobe A, Ohno Y, Kurachi Y. Pharmacophore modeling for hERG channel facilitation. Biochem Biophys Res Commun. 2012;418:161-166. https://doi.org/10.1016/j.bbrc.2011.12.153
  22. Bardai A, Amin AS, Blom MT, Bezzina CR, Berdowski J, Langendijk PN, Beekman L, Klemens CA, Souverein PC, Koster RW, de Boer A, Tan HL. Sudden cardiac arrest associated with use of a non-cardiac drug that reduces cardiac excitability: evidence from bench, bedside, and community. Eur Heart J. 2013;34:1506-1516. https://doi.org/10.1093/eurheartj/eht054
  23. Hong DH, Li H, Kim HS, Kim HW, Shin SE, Jung WK, Na SH, Choi IW, Firth AL, Park WS, Kim DJ. The effects of the selective serotonin reuptake inhibitor fluvoxamine on voltage-dependent $K^{+}$ channels in rabbit coronary arterial smooth muscle cells. Biol Pharm Bull. 2015;38:1208-1213. https://doi.org/10.1248/bpb.b15-00207
  24. Kim HW, Li H, Kim HS, Shin SE, Jung WK, Ha KS, Han ET, Hong SH, Choi IW, Park WS. Cisapride, a selective serotonin 5-HT4-receptor agonist, inhibits voltage-dependent $K^{+}$ channels in rabbit coronary arterial smooth muscle cells. Biochem Biophys Res Commun. 2016;478:1423-1428. https://doi.org/10.1016/j.bbrc.2016.08.140
  25. Lee HM, Hahn SJ, Choi BH. Blockade of Kv1.5 by paroxetine, an antidepressant drug. Korean J Physiol Pharmacol. 2016;20:75-82. https://doi.org/10.4196/kjpp.2016.20.1.75
  26. Lee HM, Hahn SJ, Choi BH. Blockade of Kv1.5 channels by the antidepressant drug sertraline. Korean J Physiol Pharmacol. 2016;20:193-200. https://doi.org/10.4196/kjpp.2016.20.2.193
  27. Xu C, Lu Y, Tang G, Wang R. Expression of voltage-dependent $K^{+}$ channel genes in mesenteric artery smooth muscle cells. Am J Physiol. 1999;277:G1055-1063.
  28. Yuan XJ, Wang J, Juhaszova M, Golovina VA, Rubin LJ. Molecular basis and function of voltage-gated $K^{+}$ channels in pulmonary arterial smooth muscle cells. Am J Physiol. 1998;274:L621-635.
  29. Lagrutta A, Wang J, Fermini B, Salata JJ. Novel, potent inhibitors of human Kv1.5 $K^{+}$ channels and ultrarapidly activating delayed rectifier potassium current. J Pharmacol Exp Ther. 2006;317:1054-1063. https://doi.org/10.1124/jpet.106.101162
  30. Zhao N, Dong Q, Du LL, Fu XX, Du YM, Liao YH. Potent suppression of Kv1.3 potassium channel and IL-2 secretion by diphenyl phosphine oxide-1 in human T cells. PLoS One. 2013;8:e64629. https://doi.org/10.1371/journal.pone.0064629
  31. Moral-Sanz J, Gonzalez T, Menendez C, David M, Moreno L, Macias A, Cortijo J, Valenzuela C, Perez-Vizcaino F, Cogolludo A. Ceramide inhibits Kv currents and contributes to TP-receptorinduced vasoconstriction in rat and human pulmonary arteries. Am J Physiol Cell Physiol. 2011;301:C186-194. https://doi.org/10.1152/ajpcell.00243.2010
  32. Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The role of DPO-1 and XE991-sensitive potassium channels in perivascular adipose tissue-mediated regulation of vascular tone. Front Physiol . 2016;7:335.
  33. Jensen BP, Roberts RL, Vyas R, Bonke G, Jardine DL, Begg EJ. Influence of ABCB1 (P-glycoprotein) haplotypes on nortriptyline pharmacokinetics and nortriptyline-induced postural hypotension in healthy volunteers. Br J Clin Pharmacol. 2012;73:619-628. https://doi.org/10.1111/j.1365-2125.2011.04126.x
  34. Quayle JM, Dart C, Standen NB. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol. 1996;494:715-726. https://doi.org/10.1113/jphysiol.1996.sp021527

Cited by

  1. Inhibition of the Voltage-Dependent K+ Current by the Tricyclic Antidepressant Desipramine in Rabbit Coronary Arterial Smooth Muscle Cells vol.18, pp.3, 2018, https://doi.org/10.1007/s12012-017-9435-x
  2. Inhibitory Effect of Tricyclic Antidepressant Doxepin on Voltage-Dependent K+ Channels in Rabbit Coronary Arterial Smooth Muscle Cells vol.19, pp.5, 2017, https://doi.org/10.1007/s12012-019-09519-8
  3. The anticholinergic drug oxybutynin inhibits voltage‐dependent K+ channels in coronary arterial smooth muscle cells vol.46, pp.11, 2017, https://doi.org/10.1111/1440-1681.13138
  4. Protriptyline, a tricyclic antidepressant, inhibits voltage-dependent K+ channels in rabbit coronary arterial smooth muscle cells vol.52, pp.3, 2017, https://doi.org/10.1093/abbs/gmz159
  5. Effect of Nortriptyline on Spreading Depolarization vol.7, pp.3, 2017, https://doi.org/10.5812/ans.102102
  6. RBMS1 regulates lung cancer ferroptosis through translational control of SLC7A11 vol.131, pp.22, 2021, https://doi.org/10.1172/jci152067