• Title/Summary/Keyword: MRI scanner

Search Result 122, Processing Time 0.023 seconds

Finite Element Modeling of the Rat Cervical Spine and Adjacent Tissues from MRI Data (MRI 데이터를 이용한 쥐의 경추와 인접한 조직의 유한요소 모델화)

  • Chung, Tae-Eun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.17 no.6
    • /
    • pp.436-442
    • /
    • 2012
  • Traumatic loading during car accidents or sports activities can lead to cervical spinal cord injury. Experiments in spinal cord injury research are mainly carried out on rabbit or rat. Finite element models that include the rat cervical spinal cord and adjacent soft tissues should be developed for efficient studies of mechanisms of spinal cord injury. Images of a rat were obtained from high resolution MRI scanner. Polygonal surfaces were extracted structure by structure from the MRI data using the ITK-SNAP volume segmentation software. These surfaces were converted to Non-uniform Rational B-spline surfaces by the INUS Rapidform rapid prototyping software. Rapidform was also used to generate a thin shell surface model for the dura mater which sheathes the spinal cord. Altair's Hypermesh pre-processor was used to generate finite element meshes for each structure. These processes in this study can be utilized in modeling of other biomedical tissues and can be one of examples for reverse engineering on biomechanics.

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Huang, Shaoying;Ren, Zhi Hua;Obruchkov, Sergei;Gong, JIa;Dykstra, Robin;Yu, Wenwei
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.179-201
    • /
    • 2019
  • Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Comparative assessment of a 1.5T endorectal coil and a 3.0T phased-array coil available for prostate MRI (전립선 MRI에서 사용하는 1.5T 경직장 코일과 3.0T 위상 배열 코일의 성능 비교 평가)

  • Cho, Jae-Hwan
    • Journal of Digital Contents Society
    • /
    • v.11 no.3
    • /
    • pp.283-290
    • /
    • 2010
  • The effectiveness of 3.0T phase array coil images was tested by comparing signal-to-noise ratios for the same coil images relative to 1.5T endorectal coil images. Signal intensities were measured in the three regions of prostate, central and peripheral (right and left) after 40 patients with prostate cancer were imaged during the period between Jan. 2008 and Oct. 2009 with T2 W, T1 W, and DW images obtained respectively using endorectal coil on a 1.5T MR scanner and phase array coil on a 3.0T MR scanner. For quantitative analysis, comparisons of average SNRs for the same ROIs were made between groups scanned with a 1.5T and a 3.0T MR scanner. The signal-to-noise ratios were shown to increase more sharply when using a phase array coil at a 3.0T MR scanner compared to using an endorectal coil at a 1.5T MR scanner.

Review of Recent Advancement of Ultra High Field Magnetic Resonance Imaging: from Anatomy to Tractography

  • Cho, Zang-Hee
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.3
    • /
    • pp.141-151
    • /
    • 2016
  • Purpose: Advances of magnetic resonance imaging (MRI), especially that of the Ultra-High Field (UHF) MRI will be reviewed. Materials and Methods: Diffusion MRI data was obtained from a healthy adult young male of age 30 using a 7.0T research MRI scanner (Magnetom, Siemens) with 40 mT/m maximum gradient field. The specific imaging parameters used for the data acquisition were a single shot DW echo planar imaging. Results: Three areas of the imaging experiments are focused on for the study, namely the anatomy, angiography, and tractography. Conclusion: It is envisioned that, in near future, there will be more 7.0T MRIs for brain research and explosive clinical application research will also be developed, for example in the area of connectomics in neuroscience and clinical neurology and neurosurgery.

The Value of Three-Dimensional Reconstructions of MRI Imaging using Maximum Intensity Projection Technique (유방 MRI의 최대강도투사 기법에 의한 3차원 재구성 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Hong, In-Sik;Kim, Hyun-Joo;Jang, Hyun-Cheol;Park, Cheol-Soo;Park, Tae-Nam
    • Journal of Digital Contents Society
    • /
    • v.12 no.2
    • /
    • pp.157-164
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of 3D reconstruction images in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, subtraction images and 3D reconstruction images were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: The 3D reconstruction images showed higher SNR at the lesion area, ductal area, and fat area that of the subtraction image. In addition, the CNR were not significantly different in the lesion area itself between the subtraction images and 3D reconstruction images.

The quantitative analysis of Diffusion Weighted Imaging in Breast MRI (유방 MRI 검사에서 확산강조영상의 정량적 분석)

  • Cho, Jae-Hwan;Kim, Hyeon-Ju;Hong, Yin-Sik;Lee, Hae-Kag
    • Journal of the Korean Society of Radiology
    • /
    • v.5 no.3
    • /
    • pp.149-154
    • /
    • 2011
  • The purpose of this study was to examine the usefulness of diffusion weighted images in breast MRI by performing a quantitative comparative analysis in patients diagnosed with DCIS. On a 3.0T MR scanner, diffusion weighted images and ADC map images were obtained from 20 patients histologically diagnosed with ductal carcinoma in situ (DCIS). The findings from the quantitative image analysis are the following: The diffusion weighted images showed higher SNR and CNR at the lesion area. In addition, the ADC values were lower at the lesion area.

MRI의 현황과 전망

  • 전희국
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.125-130
    • /
    • 1988
  • In the conventional infrared imaging system, complex infrared lens systems are usually used for directing collimated narrow infrared beams into the high speed 2-dimensional optic scanner. In this paper, a simple reflective infrared optic system with a 2-dimensional optic scanner is proposed for the realization of medical infrared thermography system. It has been experimentally proven that the intfrared thermography system composed of the proposed optic system has the temperature resolution of $0.1^{\circ}C$ under the spatial resolution of lmrad, the image matrix size of $256 {\times} 240, $ and tile imaging time of 4 seconds.

  • PDF

Imaging Studies in Mouse Brain Using Clinical 3T MRI Scanner (임상용 3T MRI를 이용한 마우스 뇌의 영상)

  • Lim, Soo-Mee;Park, Eun-Mi
    • Progress in Medical Physics
    • /
    • v.21 no.4
    • /
    • pp.348-353
    • /
    • 2010
  • The purpose of this study was to explore the potentials of a clinical 3T MRI in mouse brains and technical adaptation and optimization. T1-weighted images (T1WI), T2-weighted images (T2WI), FLAIR (Fluid Attenuated Inversion Recovery) images, Gadolinium enhanced T1-weighted images (Gd-T1WI), Diffusion weighted images (DWI) were acquired in brain of 2 mice (weight 20~25 g) with cerebral infarction by occlusion of right middle cerebral artery, 1 hour, 24 hours, 72 hours after infarction and 1 normal mouse brain using clinical 3T MRI scanner. We analyzed differentiation of striatum, ventricle, cerebral cortex, and possibility of detection of acute cerebral infarction. We could differentiate the striatum, ventricle, cerebral cortex on T2WI and on DWI, FLAIR, T1WI, the differentiation of each anatomy of brain was not definite, but acute cerebral infarction was detected on DWI of 1 hour, 24 hours, 72 hours after infarction and on T2WI, FLAIR of 24 hours, 72 hours after infarction. Clinical 3T MRI can be used in differentiation of anatomy of mouse brains and DWI can be helpul in detection of acute cerebral infarction in acute phase. With technical adaptation and optimization clinical 3T MRI can be useful tool for provide preclinical and clinical small animal studies.

Improved Current Source Design to Measure Induced Magnetic Flux Density Distributions in MREIT

  • Oh Tong-In;Cho Young;Hwang Yeon-Kyung;Oh Suk-Hoon;Woo Eung-Je;Lee Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2006
  • Injecting currents into an electrically conducting subject, we may measure the induced magnetic flux density distributions using an MRI scanner. The measured data are utilized to reconstruct cross-sectional images of internal conductivity and current density distributions in Magnetic Resonance Electrical Impedance Tomography (MREIT). Injection currents are usually provided in a form of mono-polar or bi-polar pulses synchronized with an MR pulse sequence. Given an MRI scanner performing the MR phase imaging to extract the induced magnetic flux density data, the current source becomes one of the key parts determining the signal-to-noise ratio (SNR) of the measured data. Since this SNR is crucial in determining the quality of reconstructed MREIT images, special care must be given in the design and implementation of the current source. This paper describes a current source design for MREIT with features including interleaved current injection, arbitrary current waveform, electrode switching to discharge any stored charge from previous current injections, optical isolation from an MR spectrometer and PC, precise current injection timing control synchronized with any MR pulse sequence, and versatile PC control program. The performance of the current source was verified using a 3T MRI scanner and saline phantoms.

Active Noise Control for Target Point Inside Bore Using Property of MRI Noise (MRI 소음의 특성을 이용한 공동 내부 목표점의 능동소음 제어)

  • Lee, Nokhaeng;Park, Youngjin;Park, Youn-Sik
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.1
    • /
    • pp.62-68
    • /
    • 2014
  • Recently, MRI(magnetic resonance imager) scanner is continually used for medical diagnosis and many biomedical researches. When it operates, however, intense noise is generated. The SPL(sound pressure level) of the noise approaches 130 dB especially in 3 T(Tesla) MRI. Meanwhile, more than 3 T MRI scanners have been developed to get higher-resolution images, so louder noise is expected in the future. The intense noise makes patients feel nervous and uncomfortable. Moreover, it could possibly cause hearing loss to patient in extreme cases. For this reason, some active noise control systems have been researched. One of them used feedback Filtered-X LMS(FXLMS) algorithm which is able to control only narrowband noises and possible to diverge in severe case. In this paper, we determine the property of MRI noise. Using the property, we applied a method of open-loop and adaptive control for reducing MRI noise at target point inside bore. We verified performance of the method with computer simulation and preliminary experiment. The results demonstrate that the method can effectively reduce MRI noise at target point.