DOI QR코드

DOI QR Code

Portable Low-Cost MRI System Based on Permanent Magnets/Magnet Arrays

  • Received : 2018.10.08
  • Accepted : 2019.02.21
  • Published : 2019.09.30

Abstract

Portable low-cost magnetic resonance imaging (MRI) systems have the potential to enable "point-of-care" and timely MRI diagnosis, and to make this imaging modality available to routine scans and to people in underdeveloped countries and areas. With simplicity, no maintenance, no power consumption, and low cost, permanent magnets/magnet arrays/magnet assemblies are attractive to be used as a source of static magnetic field to realize the portability and to lower the cost for an MRI scanner. However, when taking the canonical Fourier imaging approach and using linear gradient fields, homogeneous fields are required in a scanner, resulting in the facts that either a bulky magnet/magnet array is needed, or the imaging volume is too small to image an organ if the magnet/magnet array is scaled down to a portable size. Recently, with the progress on image reconstruction based on non-linear gradient field, static field patterns without spatial linearity can be used as spatial encoding magnetic fields (SEMs) to encode MRI signals for imaging. As a result, the requirements for the homogeneity of the static field can be relaxed, which allows permanent magnets/magnet arrays with reduced sizes, reduced weight to image a bigger volume covering organs such as a head. It offers opportunities of constructing a truly portable low-cost MRI scanner. For this exciting potential application, permanent magnets/magnet arrays have attracted increased attention recently. A magnet/magnet array is strongly associated with the imaging volume of an MRI scanner, image reconstruction methods, and RF excitation and RF coils, etc. through field patterns and field homogeneity. This paper offers a review of permanent magnets and magnet arrays of different kinds, especially those that can be used for spatial encoding towards the development of a portable and low-cost MRI system. It is aimed to familiarize the readers with relevant knowledge, literature, and the latest updates of the development on permanent magnets and magnet arrays for MRI. Perspectives on and challenges of using a permanent magnet/magnet array to supply a patterned static magnetic field, which does not have spatial linearity nor high field homogeneity, for image reconstruction in a portable setup are discussed.

Keywords

References

  1. http://www.hitachimed.com/products/mri/Refurbished MRISystems/Altaire.
  2. http://www.fonar.com/fonar360.htm.
  3. https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-c/features.
  4. https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-aera.
  5. https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-c/features.
  6. http://www.fonar.com/standup.htm.
  7. https://www.paramedmedicalsystems.com/sarat-immagini/mropen_pdf_15.pdf.
  8. Nishimura DG. Principles of magnetic resonance imaging. Stanford University, 2010
  9. https://www.esaote.com/dedicated-mri/mri-systems/p/o-scan/.
  10. Pissanetzky S. Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same. US5382904, 1995
  11. Vaughan JT, Wang B, Idiyatullin D, et al. Progress toward a portable MRI system for human brain imaging. In 24th ISMRM, Singapore, 2016:0498
  12. Esparza-Coss E, Cole DM. A low cost MR/permanent magnet prototype. AIP Conference Proceedings 1998:440, 119
  13. Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS. Low-cost high-performance MRI. Sci Rep 2015;5:15177 https://doi.org/10.1038/srep15177
  14. Morgan PS, Conolly S, Mazovski A. Design of uniform field biplanar magnets. In 5th Meeting of ISMRM, Toronto, Canada, 1997:1447
  15. Hennig J, Welz AM, Schultz G, et al. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. MAGMA 2008;21:5-14 https://doi.org/10.1007/s10334-008-0105-7
  16. Schultz G, Ullmann P, Lehr H, Welz AM, Hennig J, Zaitsev M. Reconstruction of MRI data encoded with arbitrarily shaped, curvilinear, nonbijective magnetic fields. Magn Reson Med 2010;64:1390-1403 https://doi.org/10.1002/mrm.22393
  17. Schultz G, Weber H, Gallichan D, et al. Radial imaging with multipolar magnetic encoding fields. IEEE Trans Med Imaging 2011;30:2134-2145 https://doi.org/10.1109/TMI.2011.2164262
  18. Stockmann JP, Galiana G, Tam L, Juchem C, Nixon TW, Constable RT. In vivo O-space imaging with a dedicated 12 cm Z2 insert coil on a human 3T scanner using phase map calibration. Magn Reson Med 2013;69:444-455 https://doi.org/10.1002/mrm.24282
  19. Stockmann JP, Ciris PA, Galiana G, Tam L, Constable RT. O-space imaging: highly efficient parallel imaging using second-order nonlinear fields as encoding gradients with no phase encoding. Magn Reson Med 2010;64:447-456 https://doi.org/10.1002/mrm.22425
  20. Cooley CZ, Stockmann JP, Armstrong BD, et al. Twodimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 2015;73:872-883 https://doi.org/10.1002/mrm.25147
  21. Ren ZH, Luo W, Su J, Huang SY. Magnet array for a portable magnetic resonance imaging system in RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO), 2015 IEEE MTT-S 2015 International Microwave Workshop Series. Taiwan, 2015:92-95
  22. Ren ZH, Mu WC, Huang SY. A new yokeless permanent magnet array with high field strength and high field homogeneity for low-field portable MRI system. In Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 2018:1743
  23. Leupold HA, Potenziani E, Tilak AS. Adjustable multitesla permanent magnet field sources. IEEE Trans Magn 1993;29:2902-2904 https://doi.org/10.1109/20.281092
  24. Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y. New material for permanent magnets on a base of Nd and Fe (invited). J Appl Phys 1984;55:2083-2087 https://doi.org/10.1063/1.333572
  25. Glover PM, Aptaker PS, Bowler JR, Ciampi E, McDonald PJ. A novel gradient permanent magnet for profiling of planar films and coatings. J Magn Reson 1999;139:90-97 https://doi.org/10.1006/jmre.1999.1772
  26. Doughty D, McDonald PJ. Drying of coatings and other applications with GARField. In Stapf S, Han S, eds. NMR in chemical engineering. Weinheim: Wiley-VCH, 2006:89-107
  27. Bennett G, Gorce JP, Keddie JL, McDonald PJ, Berglind H. Magnetic resonance profiling studies of the drying of filmforming aqueous dispersions and glue layers. Magn Reson Imaging 2003;21:235-241 https://doi.org/10.1016/S0730-725X(03)00130-9
  28. Wright SM, Brown DG, Porter JR, et al. A desktop magnetic resonance imaging system. MAGMA 2002;13:177-185 https://doi.org/10.1016/S1352-8661(01)00147-8
  29. Nagata A, Kose K, Terada Y. Development of an outdoor MRI system for measuring flow in a living tree. J Magn Reson 2016;265:129-138 https://doi.org/10.1016/j.jmr.2016.02.004
  30. Terada Y, Kono S, Uchiumi T, et al. Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet. Magn Reson Med Sci 2014;13:215-219 https://doi.org/10.2463/mrms.2013-0098
  31. Chang WH, Chen JH, Hwang LP. Single-sided mobile NMR with a Halbach magnet. Magn Reson Imaging 2006;24:1095-1102 https://doi.org/10.1016/j.mri.2006.04.005
  32. Moresi G, Magin R. Miniature permanent magnet for tabletop NMR. Conc Magn Reson 2003;B 19:35-43 https://doi.org/10.1002/cmr.b.10082
  33. Zhu ZQ, Howe D. Halbach permanent magnet machines and applications: a review. IEE Proc Elec Power Appl 2001;148:299-308 https://doi.org/10.1049/ip-epa:20010479
  34. Abele MG. Structures of permanent magnets. New York: John Wiley & Sons Inc., 1993
  35. Mallinson JC. One-Sided Fluxes - A Magnetic Curiosity? IEEE Trans Magn 1973;9:678-682 https://doi.org/10.1109/TMAG.1973.1067714
  36. Halbach K. Strong rare earth cobalt quadrupoles. IEEE Trans Nucl Sci 1979;26:3882-3884 https://doi.org/10.1109/TNS.1979.4330638
  37. Halbach K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods 1980;169:1-10 https://doi.org/10.1016/0029-554X(80)90094-4
  38. Schneiderman J, Wilensky RL, Weiss A, et al. Diagnosis of thin fibrous cap atheromas by a self-contained intravascular magnetic resonance imaging probe in exvivo human aortas and in-situ coronary arteries. J Am Coll Cardiol 2005;45:1961-1969 https://doi.org/10.1016/j.jacc.2004.09.080
  39. Atallah K, Howe D. The application of Halbach cylinders to brushless AC servo motors. IEEE Trans Magn 1998;34:2060-2062 https://doi.org/10.1109/20.706795
  40. Zhu ZQ, Xia ZP, Atallah K, Jewell GW, Howe D. Analysis of anisotropic bonded NdFeB Halbach cylinders accounting for partial powder alignment. IEEE Trans Magn 2000;36:3575-3577 https://doi.org/10.1109/20.908903
  41. Zhu ZQ, Xia ZP, Atallah K, Jewell GW, Howe D. Powder alignment system for anisotropic bonded NdFeB Halbach cylinders. IEEE Trans Magn 2000;36:3349-3352 https://doi.org/10.1109/20.908796
  42. Raich HP, Blumler P. Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas. Concepts Magn Reson 2004;23B:16-25 https://doi.org/10.1002/cmr.b.20018
  43. Danieli E, Mauler J, Perlo J, Blumich B, Casanova F. Mobile sensor for high resolution NMR spectroscopy and imaging. J Magn Reson 2009;198:80-87 https://doi.org/10.1016/j.jmr.2009.01.022
  44. Phuc HD, Poulichet P, Cong TT, Fakri A, Delabie C, Fakri-Bouchet L. Design and construction of light weight portable NMR Halbach magnet. International journal on smart sensing and intelligent systems. International Journal on Smart Sensing and Intelligent Systems (S2IS) 2014;7:1555-1578 https://doi.org/10.21307/ijssis-2017-720
  45. Jackson JA, Burnett LJ, Harmon JF. Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field. J Magn Reson 1980;41:411-421 https://doi.org/10.1016/0022-2364(80)90298-X
  46. Kleinberg R, Sezginer A, Griffin DD, Fukuhara M. Novel NMR apparatus for investigating an external sample. J Magn Reson 1992;97:466-485 https://doi.org/10.1016/0022-2364(92)90028-6
  47. Blank A, Alexandrowicz G, Muchnik L, et al. Miniature selfcontained intravascular magnetic resonance (IVMI) probe for clinical applications. Magn Reson Med 2005;54:105-112 https://doi.org/10.1002/mrm.20537
  48. Manz B, Coy A, Dykstra R, et al. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMRMOLE. J Magn Reson 2006;183:25-31 https://doi.org/10.1016/j.jmr.2006.07.017
  49. Eidmann G, Savelsberg R, Blumler P, Blumich B. The NMR MOUSE, a mibile universal surface explorer. J Magn Reson, Series A 1996;122:104-109 https://doi.org/10.1006/jmra.1996.0185
  50. Landeghem MV, Danieli E, Perlo J, Blumich B, Casanova F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J Magn Reson 2012;215:74-84 https://doi.org/10.1016/j.jmr.2011.12.010
  51. Marble AE, Mastikhin IV, Colpitts BG, Balcom BJ. An analytical methodology for magnetic field control in unilateral NMR. J Magn Reson 2005;174:78-87 https://doi.org/10.1016/j.jmr.2005.01.009
  52. Perlo J, Casanova F, Blumich B. Profiles with microscopic resolution by single-sided NMR. J Magn Reson 2005;176:64-70 https://doi.org/10.1016/j.jmr.2005.05.017
  53. Perlo J, Casanova F, Blumich B. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science 2007;315:1110-1112 https://doi.org/10.1126/science.1135499
  54. McDaniel P, Cooley C, Stockmann J, Wald L. A 6.3kg singlesided magnet for 3D, point-of-care brain imaging. ISMRMESMRMB 2018, Paris, France, 2018:0943
  55. Nishino E. Permanent magnet array for magnetic medical appliance. Gee Co, London, U.K., Tech. Rep. GB 2112645 A, Jul. 1983.
  56. Miyajima T. Permanent magnet apparatus. Japanese Patent 60 210 804 A, Oct. 23, 1985
  57. Aubert G. Permanent magnet for nuclear magnetic resonance imaging equipment. US5332971A, 1994
  58. Kaczmarz S. Angeneaherte aufloesung von systemen linearer gleichungen. Bull Acad Polon Sci Lett A 1937;35:355-357
  59. Lu D, Huang SY. A TSVD-based approach for flexible spatial encoding strategy in portable magnetic resonance imaging (MRI) system. Special session on Electromagnetics at the Heart of the Magnetic Resonance Imaging (MRI). PIETS 2017 Singapore
  60. Ren ZH, Luo W, Su J, Huang SY. Magnet array for a portable magnetic resonance imaging system in RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2015 IEEE MTT-S 2015 International Microwave Workshop Series on. Taiwan, 2015:92-95
  61. Cooley CZ, Haskell MW, Cauley SF, et al. Design of sparse Halbach magnet arrays for portable mri using a genetic algorithm. IEEE Trans Magn 2018;54:5100112
  62. Hugon C, Aguiar PM, Aubert G, Sakellariou D. Design, fabrication and evaluation of a low-cost homogeneous portable permanent magnet for NMR and MRI. Comptes Rendus Chimie 2010;13:388-393 https://doi.org/10.1016/j.crci.2009.09.009
  63. Aubert G. Cylindrical permanent magnet with longitudinal induced field. US5014032A, 1991
  64. Ren ZH, Mu WC, Huang SY. A new yokeless permanent magnet array with high field strength and high field homogeneity for low-field portable MRI system. In Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 2018:1743
  65. Ren ZH, Mu WC, Huang SY. Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. IEEE Trans Magn 2018;55:5100108
  66. Kim SH, Doose C. Temperature compensation of NdFeB permanent magnets. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), 1997;3:3227-3229
  67. Rajagopal KR, Singh B, Singh BP, Vedachalam N. Novel methods of temperature compensation for permanent magnet sensors and actuators. IEEE Trans Magn 2001;37:1995-1997 https://doi.org/10.1109/20.951032
  68. Danieli E, Perlo J, Blumich B, Casanova F. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies. Phys Rev Lett 2013;110:180801 https://doi.org/10.1103/PhysRevLett.110.180801
  69. Watkins RD, Barber WD, Frischmann PG. Temperature compensated NMR magnet and method of operation therefor. US6252405B1, 2001
  70. Schmidt R, Slobozhanyuk A, Belov P, Webb A. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci Rep 2017;10:1678 https://doi.org/10.1038/s41598-020-58638-8
  71. Motovilova E, Huang SY. Hilbert-curve-based metasurface to enhance sensitivity of radiofrequency coils for 7 T MRI. IEEE Trans Microw Theory Tech 2019;67:615-625 https://doi.org/10.1109/TMTT.2018.2882486
  72. Idiyatullin D, Suddarth S, Corum CA, Adriany G, Garwood M. Continuous SWIFT. J Magn Reson 2012;220:26-31 https://doi.org/10.1016/j.jmr.2012.04.016
  73. Sohn SM, Vaughan JT, Lagore RL, Garwood M, Idiyatullin D. In vivo MR imaging with simultaneous RF transmission and reception. Magn Reson Med 2016;76:1932-1938 https://doi.org/10.1002/mrm.26464
  74. Chen X. Computational methods for electromagnetic inverse scattering. Wiley-IEEE Press 2018, Appendix C
  75. http://iee.ac.cn/Website/index.php?ChannelID=2195
  76. Leupold H, Potenziani E. Novel high-field permanentmagnet flux sources. IEEE Trans Magn 1987;23:3628-3629 https://doi.org/10.1109/TMAG.1987.1065195

Cited by

  1. Image Quality Improvement and Memory-Saving in a Permanent-Magnet-Array-Based MRI System vol.10, pp.6, 2019, https://doi.org/10.3390/app10062177
  2. High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles vol.6, pp.29, 2019, https://doi.org/10.1126/sciadv.abb0998
  3. Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution vol.324, 2019, https://doi.org/10.1016/j.jmr.2021.106923
  4. Design and Fabrication of Compact Arrayed Magnet for Biological EPR Imaging vol.52, pp.8, 2021, https://doi.org/10.1007/s00723-020-01256-4
  5. Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings vol.238, 2019, https://doi.org/10.1016/j.neuroimage.2021.118210
  6. Rapid calculation of static magnetic field perturbation generated by magnetized objects in arbitrary orientations vol.87, pp.2, 2019, https://doi.org/10.1002/mrm.29037