References
- http://www.hitachimed.com/products/mri/Refurbished MRISystems/Altaire.
- http://www.fonar.com/fonar360.htm.
- https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-c/features.
- https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-aera.
- https://www.healthcare.siemens.com/magnetic-resonanceimaging/0-35-to-1-5t-mri-scanner/magnetom-c/features.
- http://www.fonar.com/standup.htm.
- https://www.paramedmedicalsystems.com/sarat-immagini/mropen_pdf_15.pdf.
- Nishimura DG. Principles of magnetic resonance imaging. Stanford University, 2010
- https://www.esaote.com/dedicated-mri/mri-systems/p/o-scan/.
- Pissanetzky S. Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same. US5382904, 1995
- Vaughan JT, Wang B, Idiyatullin D, et al. Progress toward a portable MRI system for human brain imaging. In 24th ISMRM, Singapore, 2016:0498
- Esparza-Coss E, Cole DM. A low cost MR/permanent magnet prototype. AIP Conference Proceedings 1998:440, 119
- Sarracanie M, LaPierre CD, Salameh N, Waddington DEJ, Witzel T, Rosen MS. Low-cost high-performance MRI. Sci Rep 2015;5:15177 https://doi.org/10.1038/srep15177
- Morgan PS, Conolly S, Mazovski A. Design of uniform field biplanar magnets. In 5th Meeting of ISMRM, Toronto, Canada, 1997:1447
- Hennig J, Welz AM, Schultz G, et al. Parallel imaging in non-bijective, curvilinear magnetic field gradients: a concept study. MAGMA 2008;21:5-14 https://doi.org/10.1007/s10334-008-0105-7
- Schultz G, Ullmann P, Lehr H, Welz AM, Hennig J, Zaitsev M. Reconstruction of MRI data encoded with arbitrarily shaped, curvilinear, nonbijective magnetic fields. Magn Reson Med 2010;64:1390-1403 https://doi.org/10.1002/mrm.22393
- Schultz G, Weber H, Gallichan D, et al. Radial imaging with multipolar magnetic encoding fields. IEEE Trans Med Imaging 2011;30:2134-2145 https://doi.org/10.1109/TMI.2011.2164262
- Stockmann JP, Galiana G, Tam L, Juchem C, Nixon TW, Constable RT. In vivo O-space imaging with a dedicated 12 cm Z2 insert coil on a human 3T scanner using phase map calibration. Magn Reson Med 2013;69:444-455 https://doi.org/10.1002/mrm.24282
- Stockmann JP, Ciris PA, Galiana G, Tam L, Constable RT. O-space imaging: highly efficient parallel imaging using second-order nonlinear fields as encoding gradients with no phase encoding. Magn Reson Med 2010;64:447-456 https://doi.org/10.1002/mrm.22425
- Cooley CZ, Stockmann JP, Armstrong BD, et al. Twodimensional imaging in a lightweight portable MRI scanner without gradient coils. Magn Reson Med 2015;73:872-883 https://doi.org/10.1002/mrm.25147
- Ren ZH, Luo W, Su J, Huang SY. Magnet array for a portable magnetic resonance imaging system in RF and wireless technologies for biomedical and healthcare applications (IMWS-BIO), 2015 IEEE MTT-S 2015 International Microwave Workshop Series. Taiwan, 2015:92-95
- Ren ZH, Mu WC, Huang SY. A new yokeless permanent magnet array with high field strength and high field homogeneity for low-field portable MRI system. In Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 2018:1743
- Leupold HA, Potenziani E, Tilak AS. Adjustable multitesla permanent magnet field sources. IEEE Trans Magn 1993;29:2902-2904 https://doi.org/10.1109/20.281092
- Sagawa M, Fujimura S, Togawa N, Yamamoto H, Matsuura Y. New material for permanent magnets on a base of Nd and Fe (invited). J Appl Phys 1984;55:2083-2087 https://doi.org/10.1063/1.333572
- Glover PM, Aptaker PS, Bowler JR, Ciampi E, McDonald PJ. A novel gradient permanent magnet for profiling of planar films and coatings. J Magn Reson 1999;139:90-97 https://doi.org/10.1006/jmre.1999.1772
- Doughty D, McDonald PJ. Drying of coatings and other applications with GARField. In Stapf S, Han S, eds. NMR in chemical engineering. Weinheim: Wiley-VCH, 2006:89-107
- Bennett G, Gorce JP, Keddie JL, McDonald PJ, Berglind H. Magnetic resonance profiling studies of the drying of filmforming aqueous dispersions and glue layers. Magn Reson Imaging 2003;21:235-241 https://doi.org/10.1016/S0730-725X(03)00130-9
- Wright SM, Brown DG, Porter JR, et al. A desktop magnetic resonance imaging system. MAGMA 2002;13:177-185 https://doi.org/10.1016/S1352-8661(01)00147-8
- Nagata A, Kose K, Terada Y. Development of an outdoor MRI system for measuring flow in a living tree. J Magn Reson 2016;265:129-138 https://doi.org/10.1016/j.jmr.2016.02.004
- Terada Y, Kono S, Uchiumi T, et al. Improved reliability in skeletal age assessment using a pediatric hand MR scanner with a 0.3T permanent magnet. Magn Reson Med Sci 2014;13:215-219 https://doi.org/10.2463/mrms.2013-0098
- Chang WH, Chen JH, Hwang LP. Single-sided mobile NMR with a Halbach magnet. Magn Reson Imaging 2006;24:1095-1102 https://doi.org/10.1016/j.mri.2006.04.005
- Moresi G, Magin R. Miniature permanent magnet for tabletop NMR. Conc Magn Reson 2003;B 19:35-43 https://doi.org/10.1002/cmr.b.10082
- Zhu ZQ, Howe D. Halbach permanent magnet machines and applications: a review. IEE Proc Elec Power Appl 2001;148:299-308 https://doi.org/10.1049/ip-epa:20010479
- Abele MG. Structures of permanent magnets. New York: John Wiley & Sons Inc., 1993
- Mallinson JC. One-Sided Fluxes - A Magnetic Curiosity? IEEE Trans Magn 1973;9:678-682 https://doi.org/10.1109/TMAG.1973.1067714
- Halbach K. Strong rare earth cobalt quadrupoles. IEEE Trans Nucl Sci 1979;26:3882-3884 https://doi.org/10.1109/TNS.1979.4330638
- Halbach K. Design of permanent multipole magnets with oriented rare earth cobalt material. Nuclear Instruments and Methods 1980;169:1-10 https://doi.org/10.1016/0029-554X(80)90094-4
- Schneiderman J, Wilensky RL, Weiss A, et al. Diagnosis of thin fibrous cap atheromas by a self-contained intravascular magnetic resonance imaging probe in exvivo human aortas and in-situ coronary arteries. J Am Coll Cardiol 2005;45:1961-1969 https://doi.org/10.1016/j.jacc.2004.09.080
- Atallah K, Howe D. The application of Halbach cylinders to brushless AC servo motors. IEEE Trans Magn 1998;34:2060-2062 https://doi.org/10.1109/20.706795
- Zhu ZQ, Xia ZP, Atallah K, Jewell GW, Howe D. Analysis of anisotropic bonded NdFeB Halbach cylinders accounting for partial powder alignment. IEEE Trans Magn 2000;36:3575-3577 https://doi.org/10.1109/20.908903
- Zhu ZQ, Xia ZP, Atallah K, Jewell GW, Howe D. Powder alignment system for anisotropic bonded NdFeB Halbach cylinders. IEEE Trans Magn 2000;36:3349-3352 https://doi.org/10.1109/20.908796
- Raich HP, Blumler P. Design and construction of a dipolar halbach array with a homogeneous field from identical bar magnets: NMR Mandhalas. Concepts Magn Reson 2004;23B:16-25 https://doi.org/10.1002/cmr.b.20018
- Danieli E, Mauler J, Perlo J, Blumich B, Casanova F. Mobile sensor for high resolution NMR spectroscopy and imaging. J Magn Reson 2009;198:80-87 https://doi.org/10.1016/j.jmr.2009.01.022
- Phuc HD, Poulichet P, Cong TT, Fakri A, Delabie C, Fakri-Bouchet L. Design and construction of light weight portable NMR Halbach magnet. International journal on smart sensing and intelligent systems. International Journal on Smart Sensing and Intelligent Systems (S2IS) 2014;7:1555-1578 https://doi.org/10.21307/ijssis-2017-720
- Jackson JA, Burnett LJ, Harmon JF. Remote (inside-out) NMR. III. Detection of nuclear magnetic resonance in a remotely produced region of homogeneous magnetic field. J Magn Reson 1980;41:411-421 https://doi.org/10.1016/0022-2364(80)90298-X
- Kleinberg R, Sezginer A, Griffin DD, Fukuhara M. Novel NMR apparatus for investigating an external sample. J Magn Reson 1992;97:466-485 https://doi.org/10.1016/0022-2364(92)90028-6
- Blank A, Alexandrowicz G, Muchnik L, et al. Miniature selfcontained intravascular magnetic resonance (IVMI) probe for clinical applications. Magn Reson Med 2005;54:105-112 https://doi.org/10.1002/mrm.20537
- Manz B, Coy A, Dykstra R, et al. A mobile one-sided NMR sensor with a homogeneous magnetic field: the NMRMOLE. J Magn Reson 2006;183:25-31 https://doi.org/10.1016/j.jmr.2006.07.017
- Eidmann G, Savelsberg R, Blumler P, Blumich B. The NMR MOUSE, a mibile universal surface explorer. J Magn Reson, Series A 1996;122:104-109 https://doi.org/10.1006/jmra.1996.0185
- Landeghem MV, Danieli E, Perlo J, Blumich B, Casanova F. Low-gradient single-sided NMR sensor for one-shot profiling of human skin. J Magn Reson 2012;215:74-84 https://doi.org/10.1016/j.jmr.2011.12.010
- Marble AE, Mastikhin IV, Colpitts BG, Balcom BJ. An analytical methodology for magnetic field control in unilateral NMR. J Magn Reson 2005;174:78-87 https://doi.org/10.1016/j.jmr.2005.01.009
- Perlo J, Casanova F, Blumich B. Profiles with microscopic resolution by single-sided NMR. J Magn Reson 2005;176:64-70 https://doi.org/10.1016/j.jmr.2005.05.017
- Perlo J, Casanova F, Blumich B. Ex situ NMR in highly homogeneous fields: 1H spectroscopy. Science 2007;315:1110-1112 https://doi.org/10.1126/science.1135499
- McDaniel P, Cooley C, Stockmann J, Wald L. A 6.3kg singlesided magnet for 3D, point-of-care brain imaging. ISMRMESMRMB 2018, Paris, France, 2018:0943
- Nishino E. Permanent magnet array for magnetic medical appliance. Gee Co, London, U.K., Tech. Rep. GB 2112645 A, Jul. 1983.
- Miyajima T. Permanent magnet apparatus. Japanese Patent 60 210 804 A, Oct. 23, 1985
- Aubert G. Permanent magnet for nuclear magnetic resonance imaging equipment. US5332971A, 1994
- Kaczmarz S. Angeneaherte aufloesung von systemen linearer gleichungen. Bull Acad Polon Sci Lett A 1937;35:355-357
- Lu D, Huang SY. A TSVD-based approach for flexible spatial encoding strategy in portable magnetic resonance imaging (MRI) system. Special session on Electromagnetics at the Heart of the Magnetic Resonance Imaging (MRI). PIETS 2017 Singapore
- Ren ZH, Luo W, Su J, Huang SY. Magnet array for a portable magnetic resonance imaging system in RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 2015 IEEE MTT-S 2015 International Microwave Workshop Series on. Taiwan, 2015:92-95
- Cooley CZ, Haskell MW, Cauley SF, et al. Design of sparse Halbach magnet arrays for portable mri using a genetic algorithm. IEEE Trans Magn 2018;54:5100112
- Hugon C, Aguiar PM, Aubert G, Sakellariou D. Design, fabrication and evaluation of a low-cost homogeneous portable permanent magnet for NMR and MRI. Comptes Rendus Chimie 2010;13:388-393 https://doi.org/10.1016/j.crci.2009.09.009
- Aubert G. Cylindrical permanent magnet with longitudinal induced field. US5014032A, 1991
- Ren ZH, Mu WC, Huang SY. A new yokeless permanent magnet array with high field strength and high field homogeneity for low-field portable MRI system. In Joint Annual Meeting ISMRM-ESMRMB, Paris, France, 2018:1743
- Ren ZH, Mu WC, Huang SY. Design and optimization of a ring-pair permanent magnet array for head imaging in a low-field portable MRI system. IEEE Trans Magn 2018;55:5100108
- Kim SH, Doose C. Temperature compensation of NdFeB permanent magnets. In Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167), 1997;3:3227-3229
- Rajagopal KR, Singh B, Singh BP, Vedachalam N. Novel methods of temperature compensation for permanent magnet sensors and actuators. IEEE Trans Magn 2001;37:1995-1997 https://doi.org/10.1109/20.951032
- Danieli E, Perlo J, Blumich B, Casanova F. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies. Phys Rev Lett 2013;110:180801 https://doi.org/10.1103/PhysRevLett.110.180801
- Watkins RD, Barber WD, Frischmann PG. Temperature compensated NMR magnet and method of operation therefor. US6252405B1, 2001
- Schmidt R, Slobozhanyuk A, Belov P, Webb A. Flexible and compact hybrid metasurfaces for enhanced ultra high field in vivo magnetic resonance imaging. Sci Rep 2017;10:1678 https://doi.org/10.1038/s41598-020-58638-8
- Motovilova E, Huang SY. Hilbert-curve-based metasurface to enhance sensitivity of radiofrequency coils for 7 T MRI. IEEE Trans Microw Theory Tech 2019;67:615-625 https://doi.org/10.1109/TMTT.2018.2882486
- Idiyatullin D, Suddarth S, Corum CA, Adriany G, Garwood M. Continuous SWIFT. J Magn Reson 2012;220:26-31 https://doi.org/10.1016/j.jmr.2012.04.016
- Sohn SM, Vaughan JT, Lagore RL, Garwood M, Idiyatullin D. In vivo MR imaging with simultaneous RF transmission and reception. Magn Reson Med 2016;76:1932-1938 https://doi.org/10.1002/mrm.26464
- Chen X. Computational methods for electromagnetic inverse scattering. Wiley-IEEE Press 2018, Appendix C
- http://iee.ac.cn/Website/index.php?ChannelID=2195
- Leupold H, Potenziani E. Novel high-field permanentmagnet flux sources. IEEE Trans Magn 1987;23:3628-3629 https://doi.org/10.1109/TMAG.1987.1065195
Cited by
- Image Quality Improvement and Memory-Saving in a Permanent-Magnet-Array-Based MRI System vol.10, pp.6, 2019, https://doi.org/10.3390/app10062177
- High-sensitivity in vivo contrast for ultra-low field magnetic resonance imaging using superparamagnetic iron oxide nanoparticles vol.6, pp.29, 2019, https://doi.org/10.1126/sciadv.abb0998
- Improving the field homogeneity of fixed- and variable-diameter discrete Halbach magnet arrays for MRI via optimization of the angular magnetization distribution vol.324, 2019, https://doi.org/10.1016/j.jmr.2021.106923
- Design and Fabrication of Compact Arrayed Magnet for Biological EPR Imaging vol.52, pp.8, 2021, https://doi.org/10.1007/s00723-020-01256-4
- Emerging ethical issues raised by highly portable MRI research in remote and resource-limited international settings vol.238, 2019, https://doi.org/10.1016/j.neuroimage.2021.118210
- Rapid calculation of static magnetic field perturbation generated by magnetized objects in arbitrary orientations vol.87, pp.2, 2019, https://doi.org/10.1002/mrm.29037