Imaging Studies in Mouse Brain Using Clinical 3T MRI Scanner

임상용 3T MRI를 이용한 마우스 뇌의 영상

  • Lim, Soo-Mee (Department of Radiology, Ewha University Mokdong Hospital, School of Medicine, Ewha Womans University) ;
  • Park, Eun-Mi (Department of Pharmacology, Ewha University Mokdong Hospital, School of Medicine, Ewha Womans University)
  • 임수미 (이화여자대학교 의학전문대학원 이대목동병원 영상의학과) ;
  • 박은미 (이화여자대학교 의학전문대학원 이대목동병원 약리학교실)
  • Received : 2010.11.26
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

The purpose of this study was to explore the potentials of a clinical 3T MRI in mouse brains and technical adaptation and optimization. T1-weighted images (T1WI), T2-weighted images (T2WI), FLAIR (Fluid Attenuated Inversion Recovery) images, Gadolinium enhanced T1-weighted images (Gd-T1WI), Diffusion weighted images (DWI) were acquired in brain of 2 mice (weight 20~25 g) with cerebral infarction by occlusion of right middle cerebral artery, 1 hour, 24 hours, 72 hours after infarction and 1 normal mouse brain using clinical 3T MRI scanner. We analyzed differentiation of striatum, ventricle, cerebral cortex, and possibility of detection of acute cerebral infarction. We could differentiate the striatum, ventricle, cerebral cortex on T2WI and on DWI, FLAIR, T1WI, the differentiation of each anatomy of brain was not definite, but acute cerebral infarction was detected on DWI of 1 hour, 24 hours, 72 hours after infarction and on T2WI, FLAIR of 24 hours, 72 hours after infarction. Clinical 3T MRI can be used in differentiation of anatomy of mouse brains and DWI can be helpul in detection of acute cerebral infarction in acute phase. With technical adaptation and optimization clinical 3T MRI can be useful tool for provide preclinical and clinical small animal studies.

임상적용 전 단계에서 마우스와 같은 작은 설치류를 이용한 신경학적 실험의 필요성이 높아지면서 임상용 3T MRI를 이용한 마우스 뇌 영상의 요구가 높아지고 있다. 본 연구에서는 임상용 3T MRI를 이용한 마우스 뇌 영상의 가능성과 기술적인 적용과 최적화에 대해 알아보고자 하였다. 20~25g 체중 마우스 3마리에서 임상용 3T MRI를 이용하여 T1 강조영상(T1WI), T2 강조영상(T2WI), FLAIR (Fluid Attenuated Inversion Recovery) 영상, 가돌리늄 조영 T1 강조영상(Gd-T1WI), 확산 강조영상(DWI)을 시행하였다. 대상이 되었던 마우스 1마리는 뇌 경색을 유발시키지 않았으며 2마리는 우측 중대뇌동맥을 결찰하여 일측 뇌경색을 유발하고 1시간, 24시간, 72시간에 각각의 MRI 영상을 시행하였으며 각 영상에서 마우스 뇌의 striatum, 뇌실, 대뇌 피질의 해부학적 구별, 뇌 경색 부위의 진단 가능성 등을 분석하였다. T2WI에서 마우스 뇌의 striatum, 뇌실, 대뇌 피질의 해부학적 구별이 모두 가능하였고 T1WI, FLAIR, DWI 영상에서는 위의 해부학적 경계부위의 해상도는 감소하였다. 뇌경색 부위는 경색 후 1시간, 24시간, 72시간 영상 모두에서 발견되었고 T2WI, FLAIR에서는 24시간, 72시간에서만 구분되었다. 임상용 3T MRI를 이용한 마우스 뇌 영상에서 해부학적 부위의 구별이 가능하였고 특히 DWI를 이용하여 급성기 뇌 경색의 진단이 가능하였다. 앞으로 기술적인 적용과 최적화를 위한 노력이 계속 진행된다면 임상 실험에 큰 도움을 줄 수 있을 것이라 생각된다.

Keywords

References

  1. Yellon DM, Alkhulaifi AM, Pugsley WB: Preconditioning the human myocardium. Lancet 342:276-277 (1993) https://doi.org/10.1016/0140-6736(93)91819-8
  2. Clavien PA, Selzner M, Rudiger HA, et al: A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 238:843-850 (2003) https://doi.org/10.1097/01.sla.0000098620.27623.7d
  3. Weih M, Bergk A, Isaev NK, et al: Attenuated stroke severity after prodromal TIA: a role for ischemic tolerance in the brain. Stroke 30:1851-1854 (1999) https://doi.org/10.1161/01.STR.30.9.1851
  4. Wegener S, Gottschalk B, Jovanovic V, et al: Transient ischemic attacks before ischemic stroke: preconditioning the human brain? A multicenter magnetic resonance imaging study. Stroke 35:616-621 (2004) https://doi.org/10.1161/01.STR.0000115767.17923.6A
  5. Bihan DL, Poupon A, Amadon A, Lethimonnier F: Artifacts and fitfalls in diffusion MRI. J Magn Reson Imaging 24:478-488 (2006) https://doi.org/10.1002/jmri.20683
  6. Huisman TA: Diffusion-weighted imaging: basic concepts and application in cerebral stroke and head trauma. Eur Radiol 13:2283-2297 (2003) https://doi.org/10.1007/s00330-003-1843-6
  7. Thoeny HC, Keyzer FD: Extracranial applications of diffusion- weighted magnetic resonance image. Eur Radiol 17:1385-1393 (2007) https://doi.org/10.1007/s00330-006-0547-0
  8. Hayashida Y, Hiral T, Morishita S, et al: Diffusion-weighted image in metastatic brain tumors: comparison of histologic type and tumor cellularity. Am J Neuroradiol 27:1419-1425 (2006)
  9. Eida S, Sumi M, Sakihama N, Takahashi H, Nakamura T: Apparent diffusion coefficient maping of salivary tumors: Prediction of benignancy and malignancy. Am J Neuroradiol 28: 116-121 (2007)
  10. Rumboldt Z, Camacho DLA, Lake D, Welsh CT, Castillo M: Apparent diffusion coefficient for differentiation of cerebellar tumors in children: Am J Neuroradiol 27:1362-1369 (2006)
  11. Pasupathy S, Homer-Vanniasinkam S: Ischemic preconditioning protects against ischaemia/reperfusion injury: emerging concepts. Eur J Vasc Endovasc Surg 29:106-115 (2005) https://doi.org/10.1016/j.ejvs.2004.11.005
  12. Part EM, Cho S, Frys K, et al: Interaction between inducible nitric oxide synthase and poly(ADP-ribose) polymerase in focal ischemic brain injury. Stroke 35:2896-2901 (2004) https://doi.org/10.1161/01.STR.0000147042.53659.6c
  13. Park JW, Kim HJ, Song GS, Han HS: Blood-brain barrier experiments with clinical magnetic resomance imaging and and immunohistochemical study. J Korean Neurosurg Soc 47:203-209 (2010) https://doi.org/10.3340/jkns.2010.47.3.203
  14. Christian TF, Gonyea J, Bell SP, Andrews T: Mouse cardiac MRI on a 3T clinical system using a low cost setup. J of Cardiovascular Magnetic Resomance 11:253 (2009) https://doi.org/10.1186/1532-429X-11-S1-P253
  15. Chen F, Keyzer FD, Wang H, et al: Diffusion weighted imaging in small rodents using clinical MRI scanners. Methods 43:12-20 (2007) https://doi.org/10.1016/j.ymeth.2007.03.007
  16. Bammer R: Principles of diffusion weighted image. Eur J Radiol 45:169-184 (2003) https://doi.org/10.1016/S0720-048X(02)00303-0
  17. Thoeny HC, Keyzer FD, Chen F, et al: Diffusion-weighted MR imaging in monitoring the effect of a vascular targeting agent on rhabdomyosarcoma in rats. Radiology 234:756-764 (2005) https://doi.org/10.1148/radiol.2343031721