• Title/Summary/Keyword: MMIC amplifier

Search Result 178, Processing Time 0.025 seconds

Development of V-band Wireless Transceiver using MMIC Modules (MMIC 모듈을 이용한 V-band 무선 송수신 시스템의 구축)

  • Lee, Sang-Jin;An, Dan;Lee, Mun-Kyo;Go, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.575-578
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band Microwave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_1$ $_{dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a P $_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a P $_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

  • PDF

V-band Self-heterodyne Wireless Transceiver using MMIC Modules

  • An, Dan;Lee, Mun-Kyo;Lee, Sang-Jin;Ko, Du-Hyun;Jin, Jin-Man;Kim, Sung-Chan;Kim, Sam-Dong;Park, Hyun-Chang;Park, Hyung-Moo;Rhee, Jin-Koo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.3
    • /
    • pp.210-219
    • /
    • 2005
  • We report on a low-cost V-band wireless transceiver with no use of any local oscillator in the receiver block using a self-heterodyne architecture. V-band millimeter-wave monolithic IC (MMIC) modules were developed to demonstrate the wireless transceiver using coplanar waveguide (CPW) and GaAs PHEMT technologies. The MMIC modules such as the MMIC low noise amplifier (LNA), medium power amplifier (MPA) and the up/down-mixer were installed in the transceiver system. To interface the MMIC chips with the component modules for the transceiver system, CPW-to-waveguide fin-line transition modules of WR-15 type were designed and fabricated. The fabricated LNA modules showed a $S_{21}$ gain of 8.4 dB and a noise figure of 5.6 dB at 58 GHz. The MPA modules exhibited a gain of 6.9 dB and a $P_{1dB}$ of 5.4 dBm at 58 GHz. The conversion losses of the up-mixer and the down-mixer module were 14.3 dB at a LO power of 15 dBm, and 19.7 dB at a LO power of 0 dBm, respectively. From the measurement of V-band wireless transceiver, a conversion gain of 0.2 dB and a $P_{1dB}$ of 5.2 dBm were obtained in the transmitter block. The receiver block showed a conversion gain of 2.1 dB and a $P_{1dB}$ of -18.6 dBm. The wireless transceiver system demonstrated a successful data transfer within a distance of 5 meters.

Fabrications of Low Conversion Loss and High LO-RF Isolation 94 GHz Resistive Mixer (낮은 변환손실과 높은 LO-RF 격리도 특성을 갖는 94 GHz Resistive Mixer 의 제작)

  • Lee, Bok-Hyung;Rhee, Jin-Koo
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.921-924
    • /
    • 2005
  • We report low conversion loss and high LO to RF isolation 94 GHz MMIC resistive mixers based on 0.1 ${\mu}m$ InGaAs/InAlAs/GaAs metamorphic HEMT technology. The fabricated resistive mixers applied a one-stage amplifier on RF port of the mixer. By using the one-stage amplifier, we obtained the decrement of conversion loss and the increment of LO to RF isolation. So, we can obtain higher performances than conventional resistive mixers. The modified mixer shows excellent conversion loss of 6.7 dB at a LO power of 10 dBm. We also observed an extremely high isolation characteristic from the MMICs exhibiting the LO-RF isolation of 21 ${\pm}$ 0.5dB in a frequency range of 93.7${\sim}$ 94.3 GHz. The low conversion loss and high LO-RF isolation characteristics of the MMIC modified resistive mixers are mainly attributed to the performance of the MHEMTs exhibiting a maximum transconductance of 654 mS/mm, a current gain cut-off frequency of 173 GHz and a maximum oscillation frequency of 271 GHz.

  • PDF

6-18 GHz Reactive Matched GaN MMIC Power Amplifiers with Distributed L-C Load Matching

  • Kim, Jihoon;Choi, Kwangseok;Lee, Sangho;Park, Hongjong;Kwon, Youngwoo
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.1
    • /
    • pp.44-51
    • /
    • 2016
  • A commercial $0.25{\mu}m$ GaN process is used to implement 6-18 GHz wideband power amplifier (PA) monolithic microwave integrated circuits (MMICs). GaN HEMTs are advantageous for enhancing RF power due to high breakdown voltages. However, the large-signal models provided by the foundry service cannot guarantee model accuracy up to frequencies close to their maximum oscillation frequency ($F_{max}$). Generally, the optimum output load point of a PA varies severely according to frequency, which creates difficulties in generating watt-level output power through the octave bandwidth. This study overcomes these issues by the development of in-house large-signal models that include a thermal model and by applying distributed L-C output load matching to reactive matched amplifiers. The proposed GaN PAs have successfully accomplished output power over 5 W through the octave bandwidth.

An L-band Stacked SOI CMOS Amplifier

  • Kim, Young-Gi;Hwang, Jae-Yeon
    • Journal of IKEEE
    • /
    • v.20 no.3
    • /
    • pp.279-284
    • /
    • 2016
  • This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm. This paper presents a two stage L-band power amplifier realized with a $0.32{\mu}m$ Silicon-On-Insulator (SOI) CMOS technology. To overcome a low breakdown voltage limit of MOSFET, stacked-FET structures are employed, where three transistors in the first stage amplifier and four transistors in the second stage amplifier are connected in series so that their output voltage swings are added in phase. The stacked-FET structures enable the proposed amplifier to achieve a 21.5 dB small-signal gain and 15.7 dBm output 1-dB compression power at 1.9 GHz with a 122 mA DC current from a 4 V supply. The amplifier delivers a 19.7 dBm saturated output power with a 16 % maximum Power Added Efficiency (PAE). A bond wire fine tuning technology enables the amplifier a 23.67 dBm saturated output power with a 20.4 % maximum PAE. The die area is $1.9mm{\times}0.6mm$.

Design and Fabrication of a GaAs MESFET MMIC Transmitter for 2.4 GHz Wireless Local Loop Handset (2.4 GHz WLL 단말기용 GaAs MESFET MMIC 송신기 설계 및 제작)

  • 성진봉;홍성용;김민건;김해천;임종원;이재진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.84-92
    • /
    • 2000
  • A GaAs MESFET MMIC transmitter for 2.4 GHz wireless local loop handset is designed and fabricated. The transmitter consists of a double balanced active mixer and a two stage driver amplifier with voltage negative feedback. In particular, a pair of CS-CG(common source-common gate) structure compensates the reduction in dynamic range caused by unbalanced complementary IF input signals. And to suppress the leakage local power at RF port, the mixer is designed by using phase characteristic between the ports of MESFET. At the bias condition of 2.7 V and 55.2 mA, the fabricated MMIC transmitter with chip dimensions of $0.75\times1.75 mm^2$ obtains a measured conversion gain of 38.6 dB, output $P_{idB}$ of 11.6 dBm, and IMD3 at -5 dBm RF output power of -31.3 dBc. This transmitter is well suited for WLL handset.

  • PDF

Broadband power amplifier design utilizing RF transformer (RF 트랜스포머를 사용한 광대역 전력증폭기 설계)

  • Kim, Ukhyun;Woo, Jewook;Jeon, Jooyoung
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.456-461
    • /
    • 2022
  • In this paper, a two-stage single-ended power amplifier (PA) with broadband gain characteristics was presented by utilizing a radio frequency (RF) transformer (TF), which is essential for a differential amplifier. The bandwidth of a PA can be improved by designing TF to have broadband characteristics and then applying it to the inter-stage matching network (IMN) of a PA. For broadband gain characteristics while maintaining the performance and area of the existing PA, an IMN was implemented on an monolithic microwave integrated circuit (MMIC) and a multi-layer printed circuit board (PCB), and the simulation results were compared. As a result of simulating the PA module designed using InGaP/GaAs HBT model, it has been confirmed that the PA employing the proposed design method has an improved fractional bandwidth of 19.8% at a center frequency of 3.3GHz, while the conventional PA showed that of 11.2%.

SSPA Development of 100W Class in Ka-band (Ka대역 100 W급 SSPA 개발)

  • Seo, Mihui;Jeong, Hae-Chang;Na, Kyoung-Il;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.129-135
    • /
    • 2022
  • In this paper, a 100 W SSPA in Ka-band was developed by combining 16 GaN MMICs which were 10 W amplifiers, respectively. The gate voltage of SSPA was controlled to minimize the effect of SSPA noise on the receiver during the receiving time. And the transmit power could be reduced about 20 dB to prevent the receiver from being saturated by a large signal from a nearby target. At 10%, 40% duty rato, the peak power and the power efficiency at center frequency were measured 52.4 dBm, 19.2%, and 51.6 dBm, 16.6% respectively.

도파관-마이크로스트립간의 트랜지션 설계

  • 이문수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.9
    • /
    • pp.722-728
    • /
    • 1990
  • A comppact waveguide to microstrip transition to be used for measurements of the performances of the U-band MMIC power amplifier is designed and fabricated. A Tchebyscheff ${\lambda}$/4 impedence transformer is adopted as an impedence converter of the transition. The designed transition is optimized to get Su less then -28dB over the 40-to-48GHZ band using Supper Compact program. The measured results shows that insertion loss and return loss are typically 0.3 and 25dB respectively over 40-to-47GHz.

  • PDF

Design and Characteristics of X-band Monolitic Series Feedback LNA using 0.5$\mu\textrm{m}$GaAs MESFET (0.5$\mu\textrm{m}$-GaAs MESFET을 이용한 X-밴드 모노리식 직렬 궤환 LNA의 설계 및 특성)

  • 전영진;김진명;정윤하
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.5
    • /
    • pp.7-13
    • /
    • 1997
  • A X-band 3-stage monolithic LNA (low noise amplifier) with series feedback has been successfully desined and demonstrated by suign 0.5-$\mu\textrm{m}$ GaAs MESFET. In the design of the 3-stage LNA, the effects of series feedback to the noise figure, the gain, and the stability have been investigated ot find the optimal short stub length. As a result, the inductive series feedback topology which has 10degree short stub in the GaAs MESFET source lead, has been employed in the 1-st stage. The fabricated MMIC LNA's chip size is only 1mm$^{2}$/stage, which is smaller than the previously reported X-band MMIC input/output return losses are less than -10dB and -15dB, respectively. The noise figure (NF) is less than 2.6dB. The measured data show good agreement with the simulated values.

  • PDF