DOI QR코드

DOI QR Code

Broadband power amplifier design utilizing RF transformer

RF 트랜스포머를 사용한 광대역 전력증폭기 설계

  • Kim, Ukhyun (Department of Electronic Engineering, Gangneung-Wonju National University) ;
  • Woo, Jewook (Department of Electronic Engineering, Gangneung-Wonju National University) ;
  • Jeon, Jooyoung (Department of Electronic Engineering, Gangneung-Wonju National University)
  • Received : 2022.09.13
  • Accepted : 2022.09.22
  • Published : 2022.09.30

Abstract

In this paper, a two-stage single-ended power amplifier (PA) with broadband gain characteristics was presented by utilizing a radio frequency (RF) transformer (TF), which is essential for a differential amplifier. The bandwidth of a PA can be improved by designing TF to have broadband characteristics and then applying it to the inter-stage matching network (IMN) of a PA. For broadband gain characteristics while maintaining the performance and area of the existing PA, an IMN was implemented on an monolithic microwave integrated circuit (MMIC) and a multi-layer printed circuit board (PCB), and the simulation results were compared. As a result of simulating the PA module designed using InGaP/GaAs HBT model, it has been confirmed that the PA employing the proposed design method has an improved fractional bandwidth of 19.8% at a center frequency of 3.3GHz, while the conventional PA showed that of 11.2%.

본 논문에서는 차동 증폭기에 필수적으로 필요한 Radio frequency(RF) transformer(TF)을 활용하여 광대역 이득 특성을 가지는 2단 단일 종단 전력증폭기를 제시하였다. RF TF의 특징을 파악하고 광대역 특성을 가지도록 설계한 뒤 2단 전력증폭기의 단간(inter-stage) 임피던스 정합 회로에 적용함으로써 증폭기의 대역폭을 향상시킬 수 있다. 기존의 2단 단일 종단(Single-ended) 증폭기의 성능과 면적을 유지하면서 광대역 이득 특성을 얻을 수 있도록 단간 정합 회로를 Monolithic Microwave Integrated Circuit (MMIC)와 다층 PCB에 구현하고 시뮬레이션을 통해 결과를 비교하였다. InGaP/GaAs HBT 모델을 사용하여 설계한 2단 전력증폭기 모듈을 시뮬레이션 한 결과 중심주파수 3.3GHz에서 기존의 전력증폭기가 11.2%의 fractional 대역폭을 보인 반면 제안된 설계 기법을 적용한 전력증폭기는 19.8%의 개선된 대역폭을 가짐을 확인하였다.

Keywords

Acknowledgement

This paper was supported by Haedong Science Foundation and research funds for newly appointed professors of Gangneung-Wonju National University in 2020.

References

  1. P. Heydari, "Transceivers for 6G Wireless Communications: Challenges and Design Solutions," 2021 IEEE Custom Integrated Circuits Conference (CICC), pp.1-8, 2021. DOI: 10.1109/CICC51472.2021.9431450
  2. H. Viswanathan and P. E. Mogensen, "Communications in the 6G era," IEEE Access, vol.8, pp.57063-57074, 2020. DOI: 10.1109/ACCESS.2020.2981745
  3. D. M. Pozar, Microwave Engineering, New York: John Wiley & Sons, Inc., 2011.
  4. Jongsik Lim, "A balanced power amplifier utilizing the reflected input power," in 2009 IEEE International Symposium on Radio-Frequency Integration Technology(RFIT), 2009. DOI: 10.1109/RFIT.2009.5383733
  5. Elham Amiri, "A distributed power amplifier design with a high power gain," in 2020 28th Iranian Conference on Electrical Engineering (ICEE), 2020. DOI: 10.1109/ICEE50131.2020.9260602