• Title/Summary/Keyword: RF transformer

Search Result 56, Processing Time 0.022 seconds

A Miniaturized Broadband Impedance Transformer Employing Periodic Ground Structure for Application to Silicon RFIC (주기적 접지구조를 이용한 실리콘 RFIC용 광대역 소형 임피던스 변환기)

  • Young, Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.483-490
    • /
    • 2011
  • Using a coplanar waveguide employing periodic ground structure (PGS) on silicon substrate, a highly miniaturized and broadband impedance transformer was developed for application to low impedance matching in broadband. Concretely, the multi-section transformer was designed using Chebyshev polynomials design technique for ultra broadband operation. Its size was 0.026 $m^2$ on silicon substrate, which was 8.7 % of the one fabricated by conventional coplanar waveguide on silicon substrate. The transformer showed a good RF performance over a ultra broadband from 8 - 49.5 GHz.

Study on Characteristics of Various RF Transmission Line Structures on PES Substrate for Application to Flexible MMIC

  • Yun, Young;Kim, Hong Seung;Jang, Nakwon
    • ETRI Journal
    • /
    • v.36 no.1
    • /
    • pp.106-115
    • /
    • 2014
  • In this work, the coplanar waveguide is fabricated on a PES (poly[ether sulfone]) substrate for application to a flexible monolithic microwave integrated circuit, and its RF characteristics were thoroughly investigated. The quality factor of the coplanar waveguide on PES is 40.3 at a resonance frequency of 46.7 GHz. A fishbone-type transmission line (FTTL) structure is also fabricated on the PES substrate, and its RF characteristics are investigated. The wavelength of the FTTL on PES is 5.11 mm at 20 GHz, which is 55% of the conventional coplanar waveguide on PES. Using the FTTL, an impedance transformer is fabricated on PES. The size of the impedance transformer is $0.318mm{\times}0.318mm$, which is 69.2% of the size of the transformer fabricated by the conventional coplanar waveguide on PES. The impedance transformer showed return loss values better than -12.9 dB from 5 GHz to 50 GHz and an insertion loss better than -1.13 dB in the same frequency range.

LTCC-based transformer design for output stage of differential RF power amplifiers (차동 전력증폭기 출력단용 LTCC 기반 RF 트랜스포머 설계)

  • Jewook Woo;Heesu Kim;Jooyoung Jeon
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • In this paper, a Radio Frequency (RF) transformer (TF) based on LTCC (Low Temperature Co-fired Ceramic) for the output stage of differential power amplifiers is presented. Instead of using an usual L-C matching circuit, a small-sized transformer was implemented on the LTCC board and the results were verified through simulation. For reduced size and better performance, a TF using more metal layers was implemented and compared with the existing TF through simulation. As a result of comparison, the proposed TF has an area reduced by 55% and a coupling coefficient increased by 25%, and insertion loss improvement of about 0.4dB at 5GHz was confirmed.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

Basic Study on RF Characteristics of Thin-Film Transmission Line Employing ML/CPW Composite Structure on Silicon Substrate and Its Application to a Highly Miniaturized Impedance Transformer

  • Jeong, Jang-Hyeon;Son, Ki-Jun;Yun, Young
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.1
    • /
    • pp.10-15
    • /
    • 2015
  • A thin-film transmission line (TFTL) employing a microstrip line/coplanar waveguide (ML/CPW) was fabricated on a silicon substrate for application to a miniaturized on-chip RF component, and the RF characteristics of the device with the proposed structure were investigated. The TFTL employing a ML/CPW composite structure exhibited a shorter wavelength than that of a conventional coplanar waveguide and that of a thin-film microstrip line. When the TFTL with the proposed structure was fabricated to have a length of ${\lambda}/8$, it showed a loss of less than 1.12 dB at up to 30 GHz. The improvement in the periodic capacitance of the TFTL caused for the propagation constant, ${\beta}$, and the effective permittivity, ${\varepsilon}_{eff}$, to have values higher than those of a device with only a conventional coplanar waveguide and a thin film microstrip line. The TFTL with the proposed structure showed a ${\beta}$ of 0.53~2.96 rad/mm and an ${\varepsilon}_{eff}$ of 22.3~25.3 when operating from 5 to 30 GHz. A highly miniaturized impedance transformer was fabricated on a silicon substrate using the proposed TFTL for application to a low-impedance transformation for broadband. The size of the impedance transformer was 0.01 mm2, which is only 1.04% of the size of a transformer fabricated using a conventional coplanar waveguide on a silicon substrate. The impedance transformer showed excellent RF performance for broadband.

Broadband power amplifier design utilizing RF transformer (RF 트랜스포머를 사용한 광대역 전력증폭기 설계)

  • Kim, Ukhyun;Woo, Jewook;Jeon, Jooyoung
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.456-461
    • /
    • 2022
  • In this paper, a two-stage single-ended power amplifier (PA) with broadband gain characteristics was presented by utilizing a radio frequency (RF) transformer (TF), which is essential for a differential amplifier. The bandwidth of a PA can be improved by designing TF to have broadband characteristics and then applying it to the inter-stage matching network (IMN) of a PA. For broadband gain characteristics while maintaining the performance and area of the existing PA, an IMN was implemented on an monolithic microwave integrated circuit (MMIC) and a multi-layer printed circuit board (PCB), and the simulation results were compared. As a result of simulating the PA module designed using InGaP/GaAs HBT model, it has been confirmed that the PA employing the proposed design method has an improved fractional bandwidth of 19.8% at a center frequency of 3.3GHz, while the conventional PA showed that of 11.2%.

HFPD Characteristic Analysis of Simulated Transformer According To Applied Voltage (인가전압에 따른 모의변압기의 HFPD 특성분석)

  • Kim, Duck-Keun;Im, Young-Sham;Lim, Jang-Seob;Moon, Chae-Joo;Lee, Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1957-1959
    • /
    • 2000
  • The PD measurement method is very useful to detect insulation degradation. Recently, the HFPD(High Frequency Partial Discharge) measurement testing is widely used in partial discharge measurement of HV machines because HFPD measurement testing receives less influence of external noise and has a merit of good sensitivity. Therefore it is very useful method compare to previous conventional PD testing method and effective diagnosis method in power transformer that requires in-service diagnosis. But partial discharges have very complex characteristics of discharge pattern so it is required continuous research to development of precise analysis method. In this study, simulated transformer is manufactured and HFPD occurred from simulated transformer is measured with broad band antenna and active-line RF measurement system in real time, the degradation grade of transformer is analyzed through produced patterns in simulated transformer according to applied voltages. Also the PD pattern which was measured with EMC analyzer and RF measurement system is compared.

  • PDF

DC voltage control by drive signal pulse-width control of full-bridged inverter

  • Ishikawa, Junichi;Suzuki, Taiju;Ikeda, Hiroaki;Mizutani, Yoko;Yoshida, Hirofumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.255-258
    • /
    • 1996
  • This paper describes a DC voltage controller for the DC power supply which is constructed using the full-bridged MOS-FET DC-to-RF power inverter and rectifier. The full-bridged MOS-FET DC-to-RF inverter consisting of four MOSFET arrays and an output power transformer has a control function which is able to control the RF output power when the widths of the pulse voltages which are fed to four MOS-FET arrays of the fall-bridged inverter are changed using the pulse width control circuit. The power conversion efficiency of the full-bridged MOS-FET DC-to-RF power inverter was approximately 85 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The RF output voltage from the full-bridged MOS-FET DC-to-RF inverter is fed to the rectifier circuit through the output transformer. The rectifier circuit consists of GaAs schottky diodes and filters, each of which is made of a coil and capacitors. The power conversion efficiency of the rectifier circuit was over 80 % when the duty cycles of the pulse voltages were changed from 30 % to 50 %. The output voltage of the rectifier circuit was changed from 34.7V to 37.6 V when the duty cycles of the pulse voltages were changed from 30 % to 50 %.

  • PDF

A Development of Ultra-compact Passive Components Employing Periodic Ground Structure for Silicon RFIC (주기적 접지구조를 이용한 실리콘 RFIC용 초소형 수동소자의 개발)

  • Yun, Young;Kim, Se-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.562-568
    • /
    • 2009
  • In this paper, using the periodic ground structure (PGS), highly miniaturized branch-line coupler and impedance transformer were realized on Si radio frequency integrated circuit (RFIC). The branch-line couple exhibited good RF performance from 41.75 to 50 GHz, and its size was $0.46{\times}0.55mm^2$, which is 37 % of conventional one. The impedance transformer exhibited good RF performance from 1 to 40GHz, and its size was $0.01mm^2$, which is 6.99 % of conventional one.

The Development of Distribution Transformer Remote Monitoring System using CATV Cable (CATV회선을 이용한 배전용 변압기 부하의 원격감시시스템 개발)

  • Park, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.939-942
    • /
    • 1998
  • This paper presents the process on the construction for the remote distribution pole transformer monitoring system. Especially, this system uses CATV cable as communication media which is located in KEPCO's main distribution line. It has four major components such as sensor for measuring secondary voltage and currents of distribution transformer, RF modem for data modulating/de-modulating, communication media for sending/receiving of data, and pc server for monitoring the results of sensing or computing information. This paper also describes the configuration of these each component's configuration and its functions.

  • PDF