차동 전력증폭기 출력단용 LTCC 기반 RF 트랜스포머 설계 LTCC-based transformer design for output stage of differential RF power amplifiers

우 제 욱^{*}, 김 희 수^{*}, 전 주 영^{*★}

Jewook Woo^{*}, Heesu Kim^{*} and Jooyoung Jeon^{**}

Abstract

In this paper, a Radio Frequency (RF) transformer (TF) based on LTCC (Low Temperature Co-fired Ceramic) for the output stage of differential power amplifiers is presented. Instead of using an usual L-C matching circuit, a small-sized transformer was implemented on the LTCC board and the results were verified through simulation. For reduced size and better performance, a TF using more metal layers was implemented and compared with the existing TF through simulation. As a result of comparison, the proposed TF has an area reduced by 55% and a coupling coefficient increased by 25%, and insertion loss improvement of about 0.4dB at 5GHz was confirmed.

요 약

본 논문에서는 차동 전력증폭기 출력단에서의 전력 결합 및 임피던스 정합을 위한 LTCC 기반의 RF 트랜스포머를 제시하였다. 기존의 인덕터와 커패시터를 이용한 정합회로 대신 회로의 면적을 덜 차지하며 직류 차단의 역할을 수행하는 트랜스포머를 LTCC 기판에 구현하고 시뮬레이션을 통해 결과를 검증하였다. 트랜스포머의 다운사이징과 결합계수의 개선을 위해 기판의 더 많은 금속 층을 사용하는 트랜스포머를 구현하고 시뮬레이션을 통해 기존의 트랜스포머와 성능을 비교하였다. 3개의 금속층을 사용한 기존의 트랜스포머와 5개의 금속층을 사용한 변형된 트랜스포머를 비교한 결과 새롭게 제시한 트랜스포머가 55% 감소된 면적과 25% 증가 한 결합계수를 가지며 5GHz에서 약 0.4dB의 삽입손실 개선을 확인하였다.

Key words : Transformer, LTCC, Power Amplifier, Differential amplifier, Magnetic coupling coefficient

ㅣ. 서론

최근 이동통신 시스템에서 초고속, 대용량 데이터 처 리에 대한 요구가 급격히 증가함에 따라 이동통신 기기 의 RF 송수신단 회로 성능의 중요성도 동시에 증가하고 있으며 이동통신 단말기의 경우 각 부품들의 소형화 및 단가 절감이 화두가 되고 있다. RF 송수신단 블록 중 가 장 큰 전력을 다루는 전력증폭기는 블록 내 주요 부품 중 하나로서 갈수록 높은 전력과 고이득, 고효율을 요구 받고 있어 개발 난도가 매우 높다. 특히 높은 주파수 대

 \star Corresponding author

^{*} Department of Electronic Engineering, Gangneung-Wonju National University.

E-mail: jyjeon@gwnu.ac.kr, TEL:+82-33-640-2430

[※] Acknowledgment

This study was supported by "2021 Academic Research Support Program in Gangneung-Wonju National University" and "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(MOE)(2022RIS-005).

Manuscript received Feb. 22, 2023; revised Feb. 28, 2023; accepted Mar. 13, 2023.

This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License(http://creativecommons.org/licenses/ by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

역을 활용하는 무선통신 시스템이 늘어나면서 고이득, 고효율의 장점을 가지는 차동 전력증폭기가 널리 활용되 고 있다[1]-[3]. 차동 전력증폭기는 입력단과 출력단에 단일종단 신호와 차동 신호를 상호변환해 주는 balun이 필수적으로 사용되는데 출력단의 경우 그 성능이 전력증 폭기 전체 성능에 직접적인 영향을 주므로 신중한 설계 가 요구된다. Balun은 여러 형태로 구현할 수 있으나 임 피던스 변환이 직관적이고 DC 분리가 가능하며 가상접 지 구현의 장점이 있는 RF 트랜스포머 형태가 선호된다. 또한 세라믹 유전체 소재는 고내열성 및 고강도 특성 이 확보되어 효용성이 크고 그 중 LTCC는 고기능성, 고 신뢰성의 회로기판 및 복합모듈 부품을 구현할 수 있는 기술이므로 점차 활용도가 확대될 것으로 기대된다.

본 연구에서는 고출력 차동 전력증폭기의 출력단용으 로 저손실 특성을 가지며, 소형화 및 신뢰성에 유리한 다 층 LTCC를 기반으로 한 적층형 RF transformer 구조 를 제안하고 Elctromagnetic(EM) 시뮬레이션을 통해 검증하였다.

11. 본론

1. 차동 전력증폭기 출력단용 트랜스포머

최근 전력증폭기 토폴로지로 널리 채택되고 있는 차동 전력증폭기는 다양한 장점을 가진다. 특히 트랜지스터의 emitter(또는 source)에 가상접지를 용이하게 구현할 수 있어 원하지 않는 축퇴현상을 방지할 수 있으며 출력 단 balun이 이상적으로 구현될 경우 우모드 고조파를 억제할 수 있다. 또한 capacitive cross-coupling neutralization 기법을 사용할 수 있어 전력 이득과 역 방향 isolation을 효과적으로 개선할 수 있다[4].

그림 1은 일반적인 차동 전력증폭기의 블록도로서 balun으로 RF 트랜스포머를 사용한 형태이다. 그림에서 차동 전력증폭기는 입력과 출력에 각각 트랜스포머를 사 용하고 있으며 출력단 트랜스포머의 경우 임피던스 정합 및 전력 결합의 중요한 역할을 수행한다. 따라서 트랜스

포머의 성능이 전체 전력증폭기의 전력출력, 이득, 효율, 선형성 등 전반적인 성능에 직접적인 영향을 미치게 됨 을 알 수 있다.

2. 적층형 RF 트랜스포머 설계

본 논문에서 제안하는 차동 전력증폭기 출력단용 적층 형 트랜스포머의 설계과정은 다음과 같다.

가. 트랜스포머 입출력 임피던스 결정

회로 시뮬레이션을 통해 차동 전력증폭기의 성능이 최 대가 되기 위한 부하 임피던스(Z_L)를 결정하고 그림 2. (a)와 같은 출력 정합회로를 구성한다. 50 ohm을 트랜 스포머만 사용하여 매우 낮은 값의 최적 부하 임피던스 로 급격하게 변환하는 것은 상대적으로 큰 삽입손실을 유발하기 때문에

- Fig. 2. (a) Schematic of output matching network of differential power amplifier (b) Corresponding impedances in (a).
- 그림 2. (a) 차동 전력증폭기의 출력단 정합회로 구성도 (b) (a)의 각 임피던스

일반적으로 L-section 임피던스 정합회로와의 조합으로 출력 정합회로를 구성한다. 각 정합회로의 임피던스 변 환 비율 또한 회로 시뮬레이션을 통한 전력증폭기의 성 능을 근거로 결정함으로써 트랜스포머 출력단 임피던스 (Z_M)를 결정하게 된다. 그림 2. (b)는 이러한 과정을 통 해 결정된 트랜스포머 입출력 임피던스를 보여준다.

나. 트랜스포머 모델 파라미터 설정

앞선 과정에서 결정된 각 임피던스 간의 변환을 수행 하기 위한 트랜스포머의 등가회로 모델 파라미터들의 값 을 소신호 시뮬레이션을 통해 확인하고 각 파라미터의 목푯값을 설정한다. 이후 단계에서 이를 달성하기 위한 EM 시뮬레이션을 반복적으로 수행한다.

다. EM 시뮬레이션용 기판 모델 생성

활용 가능한 상용 LTCC 기판의 정보를 사용하여 EM 시뮬레이션용 기판 모델을 생성한다. 본 연구에서는 전 체 8층으로 구성하였으며 모든 유전체의 비유전율은 6.2, 각 유전체층의 두께는 50, 자용된 모든 금속은 Ag이며 최상단 금속층의 두께는 15, 나머지 금속층의 두께는 10, 다. 그림 3에 해당 기판 모델을 도시하였다.

라. 레이아웃 및 EM 시뮬레이션 반복 수행

적층형 트랜스포머를 구현하기 위해 그림 4와 같이 3 개의 금속층을 사용하여 레이아웃을 수행하고 Keysight 사의 Momentum tool을 사용하여 EM simulation 수 행 후 트랜스포머의 파라미터 값을 추출하여 목푯값을 가질 때까지 이 과정을 반복한다. 원하는 임피던스 변환 을 위해서는 권선수비 N과 자기적 결합계수 k의 값이 중요하며 효율 측면에서는 k와 Q-factor 값이 중요하 다. EM simulation을 통해 추출한 트랜스포머의 파라미 터 값을 표 1에 나타내었다.

Fig. 3. LTCC substrate model. 그림 3. LTCC 기판 모델

 Fig. 4. 3D layout of designed transformer.

 그림 4. 설계한 트랜스포머의 3D 레이아웃

Table	1.	Parameter values of designed transformer.
Η	1.	설계한 트랜스포머의 파라미터 값

Parameter	Value	
Lp (nH)	0.457	
Ls (nH)	1.200	
M (nH)	0.420	
k	0.567	
Qp	55.675	
Qs	55.823	
Rp (ohm)	0.284	
Rs (ohm)	0.743	
Ν	1.620	

마. 차동 전력증폭기 성능 확인

트랜스포머의 파라미터들이 목표치에 근접하여 설계가 완료되면 차동 전력증폭기의 회로 시뮬레이션에 적용하 고 원하는 수준의 전력증폭기 성능이 얻어지는지 확인함 으로써 최종 검증을 한다. 문제점이 있을 경우 앞의 과정 들을 반복한다.

3. 트랜스포머 개선

가. 자기적 결합계수

자기적 결합계수(k)는 권선 사이의 자기적 결합의 힘을 나타내는 지표로써 권선 간의 에너지 전달 효율과 직접 적인 연관성을 가지며 식 (1)과 같이 정의된다.

$$k = \frac{M}{\sqrt{L_P L_S}} \tag{1}$$

L_p:1차 권선(primary coil)의 인덕턴스, L_s:2차 권선(secondary coil)의 인덕턴스, M:상호 인덕턴스 이상적 트랜스포머에서 k의 값은 1이고, 권선 간의 자 기적 결합이 없으면 k의 값은 0이다. 즉, 트랜스포머의 k는 0과 1 사이의 값을 가지며 주로 권선을 구성하는 도 선의 폭과 도선 간의 간격, 기판 두께 및 매질에 따라 결 정된다. k 값이 작은 트랜스포머는 삽입손실이 커지는 결과를 초래하는데 이는 식(2)에서 확인할 수 있다[5].

$$IL_{\min}(dB) = 10\log_{10}[1 + 2(x + \sqrt{x^2 + x})]$$
(2)
(\vee t, $x \approx \frac{1}{k^2 Q_p Q_s})$

따라서 동일한 기판에서 k 값을 증가시키는 구조를 적 용함으로써 삽입손실을 줄일 수 있다. 기존 3개의 금속 층을 사용한 구조(3-layer TF)를 변형하여 5개의 금속층 을 사용함으로써 누설 자기장을 줄이고 k 값을 증가시킬 수 있다. 그림 5는 이러한 개념을 적용하여 구현한 트랜 스포머의 레이아웃이다.

 Fig.
 5. Designed transformer by 5 layers.

 그림
 5. 5개의 금속층으로 구현한 트랜스포머

L2와 L4를 1차 측 권선, L1, L3, L5를 2차 측 권선을 형성하도록 하여 더 강한 자기적 결합이 발생하는 구조 로 구현하였다. 표 2는 두 트랜스포머의 파라미터 값을 비교한 것이며 유사한 형태로 5개의 금속층을 사용한 것 (5-layer TF)의 k 값이 증가하였음을 확인할 수 있다.

나. 트랜스포머 사이즈

5개의 금속층을 사용하여 권선수비를 유지하고 k를 증 가시키면서 트랜스포머의 사이즈 또한 감소시킬 수 있었 다. 기존 3-layer TF의 면적은 720×720 um²인 반면, 5-layer TF의 면적은 480×480 um²으로 약 55%의 면 적 감소가 가능하였으며 이를 그림 6에 나타내었다.

Table	2.	A comparison of parameter values.	
표	2.	파라미터값 비교	

Parameter	3-layer TF	5-layer TF
Lp (nH)	0.46	1.45
Ls (nH)	1.20	3.72
M (nH)	0.42	1.64
k	0.57	0.71
Qp	55.68	33.84
Qs	55.82	30.30
Rp (ohm)	0.28	1.48
Rs (ohm)	0.74	4.24
Ν	1.62	1.60

Fig. 6. Size comparison of two transformers. 그림 6. 두 트랜스포머의 크기 비교

 Fig. 7. Method to extract insertion loss.

 그림 7. 삽입손실 도출을 위한 구성

4. 시뮬레이션을 이용한 성능 개선 검증

(56)

두 트랜스포머의 삽입 손실(Insertion Loss)을 비교하 기 위해 트랜스포머의 EM 시뮬레이션 결과를 3-port S-parameter로 추출한 다음 그림 7과 같이 back-toback으로 구성하여 삽입손실을 각각 구하여 비교하였다.

그림 7과 같은 구성에서 한 쪽의 트랜스포머 출력단을 포트 1, 다른 한쪽의 트랜스포머 출력단을 포트 2로 하 여 S₂₁을 구한 다음 절반으로 나눈 값을 삽입손실로 정의 하고 그림 8에서 두 트랜스포머의 삽입손실을 비교한 결 과를 확인할 수 있다.

기대한 것과 같이 5-layer TF가 트랜스포머가 더 낮

은 삽입 손실을 갖는 것을 확인할 수 있다. (0.4dB at 5GHz) 이는 수식 (2)에서와 같이 k 값이 증가할수록 삽 입손실은 낮아지기 때문이다.

Ⅲ. 결론

본 논문에서는 차동 전력증폭기 출력단에서의 전력 결 합 및 임피던스 정합에 이용되는 LTCC 기반의 RF 트랜 스포머를 제시하였다. 트랜스포머 의 다운사이징과 결합 계수의 개선을 위해 기존의 트랜스포머 대비 기판의 더 많은 layer를 사용하는 구조의 트랜스포머를 구현하여 비교하였다. 시뮬레이션 결과를 통해 본 논문에서 제시 된 5-layer 구조의 트랜스포머가 기존의 3-layer 구조 의 트랜스포머에 비해 약 55% 감소된 면적과 약 25% 증가한 결합계수를 가졌고 0.4dB 내외의 삽입손실 개선 을 확인하였다. 이를 통하여 이동통신 단말기 내 송수신 모듈의 손실 특성 개선 및 소형화에 도움이 될 것으로 기대된다. 더불어 LTCC 소재의 장점으로 인해 신뢰성이 개선되고 결과적으로 수율 증가 및 단가 감소에도 기여 할 것으로 기대된다.

그림 8. 트랜스포머의 삽입손실 비교

References

[1] J. Kang et al., "A highly linear and efficient differential CMOS power amplifier with harmonic control," *IEEE J. Solid-State Circuits*, vol.41, no.6, pp.1314-1322, 2006.
DOI: 10.1109/JSSC.2006.874276

[2] J. Pang et al., "A 28 GHz CMOS phased-array transceiver featuring gain invariance based on LO phase shifting architecture with 0.1degree beam-steering resolution for 5G new radio," *proc. IEEE RF Integr. Circuits Symp.*, pp.56-59, 2018. DOI: 10.1109/RFIC.2018.8428985

[3] N. Ryu, B. Park and Y. Jeong, "A Fully Integrated High Efficiency RF Power Amplifier for WLAN Application in 40 nm Standard CMOS Process," *IEEE Microw. Wireless compon. Lett.*, vol.25, no.6, pp.382-384, 2015.

DOI: 10.1109/LMWC.2015.2421351

[4] A. R. Ghorbani and M. B. Ghaznavi-Ghoushchi, "A 35.6dB, 43.3% PAE class E differential power amplifier in 2.4GHz with cross coupling neutralization for IoT applications," *2016 24th Iranian Conference on Electrical Engineering (ICEE)*, pp.490-495, 2016.

DOI: 10.1109/IranianCEE.2016.7585571

[5] Ezzulddin, Ahmed Saadoon, Mohammed Hussain Ali, and Mutaz Shunasi Abdulwahab. "On-chip RF transformer performance improvement technique," *Engineering and Technology Journal*, vol.28, no.4, pp.676-685, 2010. DOI: 10.30684/etj.28.4.4

BIOGRAPHY

Jewook Woo (Member)

2023 : B.S. degree in Electronic Engineering, Gangneung-Wonju National University. 2023~Present : Master's student in Electronic Engineering, Gangneung-Wonju National University.

Heesu Kim (Member)

2020~Present : Undergraduate in Electronic Engineering, Gangneung-Wonju National University.

Jooyoung Jeon (Member)

1999 : B.S. degree in ElectricalEngineering, Seoul NationalUniversity.2001 : M.S. degree in ElectricalEngineering and Computer Science,Seoul National University.

2009 : Ph.D degree in Electrical Engineering and Computer Science, Seoul National University. 2009.01~2020.03 : Research and development engineer, Broadcom Inc. 2020~Present : Professor in Electronic Engineering, Gangneung-Wonju National University.