• Title/Summary/Keyword: MMIC amplifier

Search Result 178, Processing Time 0.028 seconds

An MMIC X-band Darlington-Cascade Amplifier (단일 칩 X-band 달링톤-캐스코드 증폭기)

  • Kim, Young-Gi;Doo, Seok-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.37-43
    • /
    • 2009
  • This paper describes a monolithic Darlington-cascade amplifier (DCA) operating at X-band, realized with a 0.35-micron SiGe bipolar process, which provides 45 GHz $f_T$. A conventional cascade amplifier was also designed on the same process and tested to establish a reference. Compared to the reference cascade amplifier, the proposed monolithic amplifier circuit exhibits an improved gain of 2.5 dB and improved output power 1-dB compression point of 5.2 dB with 72% wider bandwidth. Measurement results show 19.5 dB gain, 11.2 dBm 1-dB compression power, and 3.1 GHz bandwidth. These results demonstrate that the Darlington-cascade cell is an advantageous substitute to the conventional cascade amplifier.

Design and fabrication of GaAs HBT ICs for 10-Gb/s optical communication system (10-Gb/s 광통신시스템을 위한 GaAs HBT IC의 설계 및 제작)

  • 박성호;이태우;김영석;기현철;송기문;박문평;평광위
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.3
    • /
    • pp.52-59
    • /
    • 1997
  • Design and performance of principal four ICs for the 10-Gb/s optical communication system are presented. AlGaAs/GaAs HBTs are basic devices to implement a laser diode driver, apre-amplifier, and a limiting amplifier, and GaInP/GaAs HBTs are used for an AGC amplifier. We fbricated 11.5-GHz LD driver, a pre-amplifier, and a limiting amplifier, an dGaInP/GaAs HBTs are used for an AGC amplifier. We fabricated LD deriver, 10.5 GHz pre amplifier, 7.2 GHz AGC amplifier, and 10.3 GHz limiting amplifier, optimized circuit design and the stabilized MMIC fabrication process.

  • PDF

Design and fabrication of SSPA module in X-band for Radar (X-대역 레이더용 SSPA 모듈 설계 및 제작)

  • Yang, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, SSPA Module for X-band radar was designed and fabricated by using GaN MMIC. For the purpose of configuring the high power SSPA module, the drive steamers are composed of 2-layers of GaN MMIC with considering Gain Loss. In addition, the power divider and power combiner used a 4way approach by designing a 4-stage power amplifier. The power divider has a loss of -3.0dB or more, and the I/O has a loss of -0.2dB in the power combiner and the phase difference between the ports are good at $2^{\circ}$ on average. The fabricated SSPA module got the measurement results that satisfy a Gain 48dB, P(sat)=88.3W(49.46 dBm), PAE=30.3% or more efficiency in condition of frequency range 9~10GHz. The fabricated X-Band SSPA module can be applied in RF performance improvement for SSPA module whit improvement of power divider/combiner.

Power Amplifier Module for Envelope Tracking WCDMA Base-Station Applications (포락선 추적 WCDMA 기지국 응용을 위한 전력증폭기 모듈)

  • Jang, Byung-Jun;Moon, Jun-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.82-86
    • /
    • 2010
  • In this paper, a power amplifier module for WCDMA base-station applications is designed and implemented using GaN field-effect transistors (FETs), which uses an envelope tracking bias system. The designed module consists of an high gain MMIC amplifier, a driver amplifier, a power amplifier, and bias circuits for envelope tracking applications. Especially, a FET bias sequencing circuit and two isolators are integrated for stable RF operations. All circuits are assembled within a single housing, so its dimension is just $17.8{\times}9.8{\times}2.0\;cm3$. Measured results show that the developed power amplifier module has good envelope tracking capability: the power-added efficiency of 35% at the output power range from 30dBm to 40dBm over a wide range of drain bias.

0.2W Ka-band MMIC CPW Power Amplifier Design and Fabrication (0.2W급 Ka-band MMIC CPW 전력증폭기 설계 및 제작)

  • 정상화;이상효;김대현;홍성철;권영우;서광석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.8B
    • /
    • pp.1035-1040
    • /
    • 2001
  • SNU-ISRC 0.25$\mu\textrm{m}$ pHEMT 표준 공정을 사용하여 Ka-band에서 동작하는 0.2W급 MMIC CPW 전력증폭기를 설계, 제작하였다. 기존의 MMIC 공정에서 사용되는 마이크로스트립 전송선 대신 CPW 전송선을 사용함으로써 보다 간단하고 저가의 공정이 가능하였다. 전력증폭기의 설계에서는 보다 넓은 주파수 대역에서 원하는 출력전력을 얻기 위해서 출력단을 Wilkinson coupler를 사용하였는데, 일반적으로 Wilkinson coupler에 사용되는 50Ω 특성임피던스 전송선 대신에 25Ω 특성임피던스 전송선을 사용하여 좋은 출력단 전력 정합과 출력 반사손실을 동시에 얻을 수 있었다. 제작된 전력증폭기의 측정결과, 주파수 27GHz에서 출력전력 23.4dBm과 Power-added Efficiency 21.7%의 결과를 보였다.

  • PDF

A Novel Air-Gap Stacked Microstrip 3 dB Coupler for MMIC (공기 절연 적층형 마이크로스트립 구조의 새로운 3 dB 커플러 MMIC)

  • 류기현;김대현;이재학;서광석
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.5
    • /
    • pp.688-693
    • /
    • 1999
  • This paper presents a very simple coupled line structure for MMIC which uses stacked microstrip line and does not employ any dielectric process step. For the analysis and optimization of these coupled line structure, HP-Momentum was used. The measured performance of 3 dB coupler shows 23 to 45 GHz broadband characteristics. Additionally, a balanced 2-stage Ka-Band power amplifier which uses the proposed 3 dB coupler, was also fabricated.

  • PDF

77 GHz Power Amplifier MMIC by 120nm InAlAs/InGaAs Metamorphic HEMT (MMIC by 120nm InAlAs/InGaAs Metamorphic HEMT를 이용한 77 GHz 전력 증폭기 제작)

  • Kim, Sung-Won;Seol, Gyung-Sun;Kim, Kyoung-Woon;Choi, Woo-Yeol;Kwon, Young-Woo;Seo, Kwang-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.553-554
    • /
    • 2006
  • In this paper, 77 GHz CPW power amplifier MMIC, which are consisted of a 2 stage driver stage and a power stage employing $8{\times}50um$ gate width, have been successfully developed by using 120nm $In_{0.4}AlAs/In_{0.35}GaAs$ Metamorphic high electron mobility transistors (MHEMTs). The devices show an extrinsic transconductance $g_m$ of 660 mS/mm, a maximum drain current of 700 mA/mm, and a gate drain breakdown voltage of -8.5 V. A cut-off frequency ($f_T$) of 172 GHz and a maximum oscillation frequency ($f_{max}$) of over 300 GHz are achieved. The fabricated PA exhibited high power gain of 20dB only with 3 stages. The output power is measured to be 12.5 dBm.

  • PDF

Millimeter Wave MMIC Low Noise Amplifiers Using a 0.15 ${\mu}m$ Commercial pHEMT Process

  • Jang, Byung-Jun;Yom, In-Bok;Lee, Seong-Pal
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.190-196
    • /
    • 2002
  • This paper presents millimeter wave monolithic microwave integrated circuit (MMIC) low noise amplifiers using a $0.15{\mu}m$ commercial pHEMT process. After carefully investigating design considerations for millimeter-wave applications, with emphasis on the active device model and electomagnetic (EM) simulation, we designed two single-ended low noise amplifiers, one for Q-band and one for V-band. The Q-band two stage amplifier showed an average noise figure of 2.2 dB with an 18.3 dB average gain at 44 GHz. The V-band two stage amplifier showed an average noise figure of 2.9 dB with a 14.7 dB average gain at 65 GHz. Our design technique and model demonstrates good agreement between measured and predicted results. Compared with the published data, this work also presents state-of-the-art performance in terms of the gain and noise figure.

  • PDF

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

A 3 Stage MMIC Low Noise Amplifier for the Ka Band Satellite Communications and BWLL System (Ka 대역 위성통신 및 BWLL 시스템용 3단 MMIC 저잡음 증폭기 설계 및 제작)

  • 염인복;정진철;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.1
    • /
    • pp.71-76
    • /
    • 2001
  • A Ka Band 3-stage MMIC (Monolithic Microwave Integrated Circuits) LNA (Low Noise Amplifiers) has been designed and fabricated far the Ka band satellite communications and BWLL(Broad Band Wireless Local Loop)system. The MMIC LNA consists of two single-ended type amplification stages and one balanced type amplification stage to satisfy noise figure, high gain and amplitude linearity. The 0.15${\mu}{\textrm}{m}$ pHEMT has been used to provide a ultra low noise figure and high gain amplification. Series and Shunt feedback circuits and λ/4 short lines were inserted to ensure high stability over the frequency range form DC to 80 GHz. The size of the MMIC LNA is 3.1mm$\times$2.4mm(7.44mm$^2$). The on wafer measured performance of the MMIC LNA, which agreed with the designed performance, showed the noise figure of less than 2.0 dB, and the gain of more than 26 dB, over frequency ranges from 22 GHz to 30 GHz.

  • PDF