• Title/Summary/Keyword: MEMS technology

Search Result 767, Processing Time 0.034 seconds

Application of Au-Sn Eutectic Bonding in Hermetic Rf MEMS Wafer Level Packaging (Au-Sn 공정 접합을 이용한 RF MEMS 소자의 Hermetic 웨이퍼 레벨 패키징)

  • Wang Qian;Kim Woonbae;Choa Sung-Hoon;Jung Kyudong;Hwang Junsik;Lee Moonchul;Moon Changyoul;Song Insang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.3 s.36
    • /
    • pp.197-205
    • /
    • 2005
  • Development of the packaging is one of the critical issues for commercialization of the RF-MEMS devices. RF MEMS package should be designed to have small size, hermetic protection, good RF performance and high reliability. In addition, packaging should be conducted at sufficiently low temperature. In this paper, a low temperature hermetic wafer level packaging scheme for the RF-MEMS devices is presented. For hermetic sealing, Au-Sn eutectic bonding technology at the temperature below $300{\times}C$ is used. Au-Sn multilayer metallization with a square loop of $70{\mu}m$ in width is performed. The electrical feed-through is achieved by the vertical through-hole via filled with electroplated Cu. The size of the MEMS Package is $1mm\times1mm\times700{\mu}m$. By applying $O_2$ plasma ashing and fabrication process optimization, we can achieve the void-free structure within the bonding interface as well as via hole. The shear strength and hermeticity of the package satisfy the requirements of MIL-STD-883F. Any organic gases or contamination are not observed inside the package. The total insertion loss for the packaging is 0.075 dB at 2 GHz. Furthermore, the robustness of the package is demonstrated by observing no performance degradation and physical damage of the package after several reliability tests.

  • PDF

A Study on Implementation of Automatic Evaluation System for Static Performance of 6 DOF MEMS Inertial Sensor (6자유도 MEMS 관성센서 정적성능 자동 평가 시스템 구현에 관한 연구)

  • Ji Won Park;Hussamud Din;Byeung Leul Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.3
    • /
    • pp.62-66
    • /
    • 2023
  • With the advancement in technology and rapid increase in the demand for microelectromechanical systems (MEMS) based inertial measurement units (IMUs), high-volume production and test system remain a major challenge for the MEMS industry. To compete with the challenging market of Industry 4.0, here we developed an automatic test system to evaluate the performance of the ovenized IMU sensors as well as analyze the data. The automatic test system was developed by interfacing a commercial MEMS IMU (BMI 088) using LabVIEW. The BMI 088 was tested experimentally for long-term bias stability, ON/OFF bias repeatability, and root mean square (rms) noise. Furthermore, the data was analyzed through the developed test system. The results show that the automatic test system has improved the test time and reduced human effort. The developed automatic test system is a significant approach to MEMS research and development (R&D) to increase and improve the mass production of IMUs.

  • PDF

MEMS Embedded System Design (MEMS 임베디드 시스템 설계)

  • Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.47-54
    • /
    • 2022
  • In this paper, MEMS embedded system design implemented the sensor events via analyzing the characteristics that dynamically happened to an abnormal status in power IoT environments in order to guarantee a maintainable operation. We used three kinds of tools in this paper, at first Bluetooth Low Energy (BLE) technology which is a suitable protocol that provides a low data rate, low power consumption, and low-cost sensor applications. Secondly LSM6DSOX, a system-in-module containing a 3-axis digital accelerometer and gyroscope with low-power features for optimal motion. Thirdly BM1422AGMV Digital Magnetometer IC, a 3-axis magnetic sensor with an I2C interface and a magnetic measurable range of ±120 uT, which incorporates magneto-impedance elements to detect the magnetic field when the current flowed in the power devices. The proposed MEMS system was developed based on an nRF5340 System on Chip (SoC), previously compared to the standalone embedded system without bluetooth technology via mobile App. And also, MEMS embedded system with BLE 5.0 technology broadcasted the MEMS system status to Android mobile server. The experiment results enhanced the performance of MEMS system design by combination of sensors, BLE technology and mobile application.

Fabrication Uncertainty and Noise Issues in High-Precision MEMS Actuators and Sensors

  • Cho, Young-Ho;Lee, Won-Chul;Han, Ki-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.4
    • /
    • pp.280-287
    • /
    • 2002
  • We present technical issues involved in the development of actuators and sensors for applications to high-precision Micro Electro Mechanical System (MEMS). The technical issues include fabrication uncertainty and noise disturbance, causing major difficulties for MEMS to achieve high-precision actuation and detection functions. For nano-precision actuators, we solve the fabrication instability and electrical noise problems using digital actuators coupled with nonlinear mechanical modulators. For the high-precision capacitive sensors, we present a branched finger electrodes using high-amplitude anti-phase sensing signals. We also demonstrate the potential applications of the nanoactuators and nanodetectors to high-precision positioning MEMS.

A Consideration on the Process Technology and Application of MEMS to prepare for upcoming MEMS-based technological paradigm (MEMS 기반의 새로운 기술적 패러다임에 대비한 공정 기술 분석 및 적용에 대한 고찰)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.979-986
    • /
    • 2013
  • Recently, in the electric, electronic, robotic, and medical industries, a great attention has been paid to the development of MEMS-based smart devices with a compact size and highly intelligency. The MEMS technology is very effective in designing into a compact size and lightweight by combining into one the complex electrical, mechanical, chemical, and biological features which are required by smart devices, and at the same time, in bulk batch manufacturing. Therefore, this study, to prepare for upcoming new MEMS-based technological paradigm, analyzes MEMS processes and then considers its Applications.

Monolithically Integrable RF MEMS Passives

  • Park, Eun-Chul;Park, Yun-Seok;Yoon, Jun-Bo;Euisik Yoon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.2 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • This paper presents high performance MEMS passives using fully CMOS compatible, monolithically integrable 3-D RF MEMS processes for RF and microwave applications. The 3-D RF MEMS technology has been developed and investigated as a viable technological option, which can break the limit of the conventional IC technology. We have demonstrated the versatility of the technology by fabricating various 3-D thick-metal microstructures for RF and microwave applications, such as spiral/solenoid inductors, transformers, and transmission lines, with a vertical dimension of up to $100{\;}\mu\textrm{m}$. To the best of our knowledge, we report that we are the first to construct a fully integrated VCO with MEMS inductors, which has achieved a low phase noise of -124 dBc/Hz at 300 kHz offset from a center frequency of 1 GHz.

Vacuum Packaging of MEMS (Microelectromechanical System) Devices using LTCC (Low Temperature Co-fired Ceramic) Technology (LTCC 기술을 이용한 MEMS 소자 진공 패키징)

  • 전종인;최혜정;김광성;이영범;김무영;임채임;황건탁;문제도;최원재
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 2003
  • In the current electronic technology atmosphere, MEMS (Microelectromechanical System) technology is regarded as one of promising device manufacturing technologies to realize market-demanding device properties. In the packaging of MEMS devices, the packaged structure must maintain hermeticity to protect the devices from a hostile atmosphere during their operations. For such MEMS device vacuum packaging, we introduce the LTCC (Low temperature Cofired Ceramic) packaging technology, in which embedded passive components such as resistors, capacitors and inductors can be realized inside the package. The technology has also the advantages of the shortened length of inner and surface traces, reduced signal delay time due to the multilayer structure and cost reduction by more simplified packaging processes owing to the realization of embedded passives which in turn enhances the electrical performance and increases the reliability of the packages. In this paper, the leakage rate of the LTCC package having several interfaces was measured and the possibility of LTCC technology application to MEMS devices vacuum packaging was investigated and it was verified that improved hermetic sealing can be achieved for various model structures having different types of interfaces (leak rate: stacked via; $4.1{\pm}1.11{\times}10^{-12}$/ Torrl/sec, LTCC/AgPd/solder/Cu-tube; $3.4{\pm}0.33{\times}10^{-12}$/ Torrl/sec). In real application of the LTCC technology, the technology can be successfully applied to the vacuum packaging of the Infrared Sensor Array and the images of light-up lamp through the sensor way in LTCC package structure was presented.

  • PDF

Characterization of High Temperature MEMS Heater (고온 구동 MEMS 히터의 특성 분석)

  • Lee, Kook-Nyung;Jung, Suk-Won;Seong, Woo-Kyeong
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1527_1528
    • /
    • 2009
  • 떠 있는 열선 구조를 채택한 고온 구동 마이크로 MEMS 히터의 특성을 평가하고 분석하였다. 고온 MEMS 히터는 적외선을 이용한 광학식 가스센서의 주요한 핵심 부품인 적외선 발광원으로 활용할 수 있다. MEMS 기술을 이용하여 대량생산이 가능하여 가격을 낮출 수 있고 소비전력이 작아 적외선 센서의 광원으로 응용되는 등 관련 분야의 연구가 많이 이루어지고 있다. 본 논문에서는 실리콘 기판으로부터 떠 있는 실리콘 지지구조물 위에 형성된 백금 저항성으로 고온 발열 동작하는 새로운 구조의 MEMS 히터에 대한 온도 특성을 고해상도 적외선 카메라로 측정한 이미지를 이용하여 분석하였다.

  • PDF

Consumable Approaches of Polysilicon MEMS CMP

  • Park, Sung-Min;Jeong, Suk-Hoon;Jeong, Moon-Ki;Park, Boum-Young;Jeong, Hae-Do;Kim, Hyoung-Jae
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.4
    • /
    • pp.157-162
    • /
    • 2006
  • Chemical-mechanical polishing (CMP), one of the dominant technology for ULSI planarization, is used to flatten the micro electro-mechanical systems (MEMS) structures. The objective of this paper is to achieve good planarization of the deposited film and to improve deposition efficiency of subsequent layer structures by using surface-micromachining process in MEMS technology. Planarization characteristic of poly-Si film deposited on thin oxide layer with MEMS structures is evaluated with different slurries. Patterns used for this research have shapes of square, density, line, hole, pillar, and micro engine part. Advantages of CMP process for MEMS structures are observed respectively by using the test patterns with structures larger than 1 urn line width. Preliminary tests for material selectivity of poly-Si and oxide are conducted with two types of silica slurries: $ILD1300^{TM}\;and\;Nalco2371^{TM}$. And then, the experiments were conducted based on the pretest. A selectivity and pH adjustment of slurry affected largely step heights of MEMS structures. These results would be anticipated as an important bridge stone to manufacture MEMS CMP slurry.

Silicon Prism-based NIR Spectrometer Utilizing MEMS Technology

  • Jung, Dong Geon;Son, Su Hee;Kwon, Sun Young;Lee, Jun Yeop;Kong, Seong Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.91-95
    • /
    • 2017
  • Recently, infrared (IR) spectrometers have been required in various fields such as environment, safety, mobile, automotive, and military. This IR dispersive sensor detection method of substances is widely used. In this study, we fabricated a silicon (Si) prism-based near infrared (NIR) spectrometer utilizing micro electro mechanical system (MEMS) technology. Si prism-based NIR spectrometer utilizing MEMS technology consists of upper, middle, and lower substrates. The upper substrate passes through the incident IR ray selectively. The middle substrate, acting as a prism, disperses and separates the incident IR beam. The lower substrate has an amorphous Si (a-Si)-based bolometer array to detect the IR spectrum. The fabricated Si prism-based NIR spectrometer utilizing MEMS technology has the advantage of a simple structure, easy fabrication steps, and a wide NIR region operating range.