• 제목/요약/키워드: M-prime module

검색결과 49건 처리시간 0.024초

THE SET OF ATTACHED PRIME IDEALS OF LOCAL COHOMOLOGY

  • RASOULYAR, S.
    • 호남수학학술지
    • /
    • 제23권1호
    • /
    • pp.1-4
    • /
    • 2001
  • In [2, 7.3.2], the set of attached prime ideals of local cohomology module $H_m^n(M)$ were calculated, where (A, m) be Noetherian local ring, M finite A-module and $dim_A(M)=n$, and also in the special case in which furthermore A is a homomorphic image of a Gornestien local ring (A', m') (see [2, 11.3.6]). In this paper, we shall obtain this set, by another way in this special case.

  • PDF

THE FINITE DIMENSIONAL PRIME RINGS

  • Koh, Kwangil
    • 대한수학회보
    • /
    • 제20권1호
    • /
    • pp.45-49
    • /
    • 1983
  • If R is ring and M is a right (or left) R-module, then M is called a faithful R-module if, for some a in R, x.a=0 for all x.mem.M then a=0. In [4], R.E. Johnson defines that M is a prime module if every non-zero submodule of M is faithful. Let us define that M is of prime type provided that M is faithful if and only if every non-zero submodule is faithful. We call a right (left) ideal I of R is of prime type if R/I is of prime type as a R-module. This is equivalent to the condition that if xRy.subeq.I then either x.mem.I ro y.mem.I (see [5:3:1]). It is easy to see that in case R is a commutative ring then a right or left ideal of a prime type is just a prime ideal. We have defined in [5], that a chain of right ideals of prime type in a ring R is a finite strictly increasing sequence I$_{0}$.contnd.I$_{1}$.contnd....contnd.I$_{n}$; the length of the chain is n. By the right dimension of a ring R, which is denoted by dim, R, we mean the supremum of the length of all chains of right ideals of prime type in R. It is an integer .geq.0 or .inf.. The left dimension of R, which is denoted by dim$_{l}$ R is similarly defined. It was shown in [5], that dim$_{r}$R=0 if and only if dim$_{l}$ R=0 if and only if R modulo the prime radical is a strongly regular ring. By "a strongly regular ring", we mean that for every a in R there is x in R such that axa=a=a$^{2}$x. It was also shown that R is a simple ring if and only if every right ideal is of prime type if and only if every left ideal is of prime type. In case, R is a (right or left) primitive ring then dim$_{r}$R=n if and only if dim$_{l}$ R=n if and only if R.iden.D$_{n+1}$ , n+1 by n+1 matrix ring on a division ring D. in this paper, we establish the following results: (1) If R is prime ring and dim$_{r}$R=n then either R is a righe Ore domain such that every non-zero right ideal of a prime type contains a non-zero minimal prime ideal or the classical ring of ritght quotients is isomorphic to m*m matrix ring over a division ring where m.leq.n+1. (b) If R is prime ring and dim$_{r}$R=n then dim$_{l}$ R=n if dim$_{l}$ R=n if dim$_{l}$ R<.inf. (c) Let R be a principal right and left ideal domain. If dim$_{r}$R=1 then R is an unique factorization domain.TEX>R=1 then R is an unique factorization domain.

  • PDF

ON THE PRIME SPECTRUM OF A MODULE OVER A COMMUTATIVE NOETHERIAN RING

  • Ansari-Toroghy, H.;Sarmazdeh-Ovlyaee, R.
    • 호남수학학술지
    • /
    • 제29권3호
    • /
    • pp.351-366
    • /
    • 2007
  • Let R be a commutative ring and let M be an R-module. Let X = Spec(M) be the prime spectrum of M with Zariski topology. Our main purpose in this paper is to specify the topological dimensions of X, where X is a Noetherian topological space, and compare them with those of topological dimensions of $Supp_{R}$(M). Also we will give a characterization for the irreducibility of X and we obtain some related results.

CATENARY MODULES II

  • NAMAZI, S.;SHARIF, H.
    • 호남수학학술지
    • /
    • 제22권1호
    • /
    • pp.9-16
    • /
    • 2000
  • An A-module M is catenary if for each pair of prime submodules K and L of M with $K{\subset}L$ all saturated chains of prime submodules of M from K to L have a common finite length. We show that when A is a Noetherian domain, then every finitely generated A-module is catenary if and only if A is a Dedekind domain or a field. Moreover, a torsion-free divisible A-module M is catenary if and only if the vector space M over Q(A) (the field of fractions of A) is finite dimensional.

  • PDF

MODULES WITH PRIME ENDOMORPHISM RINGS

  • Bae, Soon-Sook
    • 대한수학회지
    • /
    • 제38권5호
    • /
    • pp.987-1030
    • /
    • 2001
  • Some discrimination of modules whose endomorhism rings are prime is introduced, by means of structures of submodules inducing prime ideals of the endomorphism ring End(sub)R (M) of a left R-module (sub)RM over a ring R. Modules with non-prime endomorphism rings are contrapositively studied as well.

  • PDF

CERTAIN DISCRIMINATIONS OF PRIME ENDOMORPHISM AND PRIME MATRIX

  • Bae, Soon-Sook
    • East Asian mathematical journal
    • /
    • 제14권2호
    • /
    • pp.259-268
    • /
    • 1998
  • In this paper, for a commutative ring R with an identity, considering the endomorphism ring $End_R$(M) of left R-module $_RM$ which is (quasi-)injective or (quasi-)projective, some discriminations of prime endomorphism were found as follows: each epimorphism with the irreducible(or simple) kernel on a (quasi-)injective module and each monomorphism with maximal image on a (quasi-)projective module are prime. It was shown that for a field F, any given square matrix in $Mat_{n{\times}n}$(F) with maximal image and irreducible kernel is a prime matrix, furthermore, any given matrix in $Mat_{n{\times}n}$(F) for any field F can be factored into a product of prime matrices.

  • PDF

MULTIPLICATION MODULES WHOSE ENDOMORPHISM RINGS ARE INTEGRAL DOMAINS

  • Lee, Sang-Cheol
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.1053-1066
    • /
    • 2010
  • In this paper, several properties of endomorphism rings of modules are investigated. A multiplication module M over a commutative ring R induces a commutative ring $M^*$ of endomorphisms of M and hence the relation between the prime (maximal) submodules of M and the prime (maximal) ideals of $M^*$ can be found. In particular, two classes of ideals of $M^*$ are discussed in this paper: one is of the form $G_{M^*}\;(M,\;N)\;=\;\{f\;{\in}\;M^*\;|\;f(M)\;{\subseteq}\;N\}$ and the other is of the form $G_{M^*}\;(N,\;0)\;=\;\{f\;{\in}\;M^*\;|\;f(N)\;=\;0\}$ for a submodule N of M.

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • 대한수학회논문집
    • /
    • 제19권2호
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

ON M-INJECTIVE MODULES AND M-IDEALS

  • Min, Kang-Joo
    • 충청수학회지
    • /
    • 제18권1호
    • /
    • pp.87-93
    • /
    • 2005
  • For a left R-module M, we identify certain submodules of M that play a role analogous to that of ideals in the ring R. We investigate some properties of M-ideals in the submodules of M and also study Jacobson radicals of a submodule of M.

  • PDF

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • 대한수학회지
    • /
    • 제53권5호
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.