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ABSTRACT. The aim of this note is to study properties of the gener-
alized centroid of the semi-prime gamma rings. Main results are the
following theorems: (1) Let M be a semi-prime I-ring and @ a quo-
tient T'-ring of M. If W is a non-zero submodule of the right(left)
M-module @, then WI'W # 0. Furthermore @ is a semi-prime
I-ring. (2) Let M be a semi-prime I'-ring and Cr the generalized
centroid of M. Then Cr is a regular I'-ring. (3) Let M be a semi-
prime [-ring and Ct the extended centroid of M. If Cr is a I'-field,
then the I'-ring M is a prime I’-ring.

1. Introduction

Nobusawa studied on I'-ring for the first time in [6]. After his re-
search, Barnes studied on this I'-ring in [1|. But Barnes approached
to I'-ring in some different way from that of Nobusawa and he defined
the concept of I'-ring and related definitions. After these two papers
were published, many mathematicians made good works on I'-ring in
the sense of Barnes and Nobusawa, which are parallel to the results in
the ring theory (see [2, 6, 9]). On the other hand, the topic of “prime
rings satisfying a generalized polynomial identity” is important to and
essential source of many researchers containing Martindale [5]. In [7]
and [8], some parts of the researches on them have been extended to
T-ring. That is, the concept of “centroid of a prime I'-ring” was defined
and researched in [7] and [8]. Furthermore it is shown that the extended
centroid is a I'-field in [8]. The aim of this paper is to prove that the
generalized centroid of a semi-prime I'-ring is a regular I'-ring.
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2. Preliminaries

The gamma ring is defined in [1] as follows : A T'-ring is a pair
(M,T') where M and I are (additive) abelian groups for which exists a
(—,——): M xT' x M — M (the image of (a,«,b) being denoted by
aab for a,b € M and a € I') satisfying for all a,b,c € M and a,F €I :

¢ (a+ b)ac = aac + bac,

e a(a+ B)b = aab+ afb,

e aa(b+ c) = aad + aac,

e (aab)Bec = aa(bfe).

Let M be a I'-ring. A right (resp. left) ideal of M is an additive
subgroup U such that UT'M C U (resp. MTU C U). If U is both a
right and left ideal, then we say that U is an ideal. For each a € M the
smallest right (resp. left) ideal containing a is called the principal right
(resp. left) ideal generated by a and is denoted by |a) (resp. (a}). Also,
we define (a), the principal two-side (right and left) ideal generated by
a. An ideal Q of M is semi-prime if, for any ideal U of M, UTU C Q
implies U C Q. A T'-ring M is said to be semi-prime if the zero ideal is
semi-prime.

REMARK 2.1. A T'-ring M is semi-prime if and only if all of its non-
zero ideals have a non-zero multiplication, i.e., for an ideal U the equality
UTU = (0) implies U = (0).

THEOREM 2.2. [2] If Q is an ideal of a I'-ring M, then the following
conditions are equivalent.
(i) Q is a semi-prime ideal.
(ii) If a € M such that al’' MTa C Q, then a € Q.
(iii) If (a) is a principal ideal in M such that (a)T'{a) C @, then a € Q.
(iv) If U is a right ideal in M such that UTU C Q, then U C Q.
(v) IfU is a left ideal in M such that VI'V C Q , then V C Q.

LEMMA 2.3. [2] A T-ring M is semi-prime if and only if al’' MTa = (0)
implies a = 0.

Let M be a I'-ring. For a subset U of M,
AnnU = {a € M | aT'U = (0)}

is called the left annihilator of U. A right annihilator Ann,U can be
defined similarly. An ideal of M is said to be essential if it has non-zero
intersection with any non-zero ideal of M.
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LEMMA 24. [9] Let M be a semi-prime I'-ring and U a non-zero
ideal of M. Then AnnyU = Ann,U, and in this case we will write
AnnyU = Ann, U = AnnU.

LEMMA 2.5. [9] Let M be a semi-prime I'-ring and U a non-zero ideal
of M. Then

(i) AnnU is an ideal of M,
(if) U N AnnU = (0).

DEFINITION 2.6. [8] Let M be a I'-ring with unity. An element « in
M is called a unity of M if it has a multiplicative inverse in M. If every
nonzero element of M is a unity, we say that M is a I'-division ring. A
I-ring M is a I'-field if it is a commutative I'-division ring.

DEFINITION 2.7. [8] Let M be a I'-ring and @ the quotient I'-ring of
M. The set

Cr:={9€Q|gvf=fyg forall f€Qandyel}
is called the eztended centroid of M.

LEMMA 2.8. [8] If M is a I'-ring, then the extended centroid Cr of
M is a T'-field.

3. Main results

Let M be a semi-prime I'-ring. Let us denote by F' a set of all
ideals of M which have zero annihilator in M. In this case, the set
F is closed under multiplication by Lemma 2.4. Indeed, let U and V
be in F. The equality UI'VBx = 0 for z € M and all 8 € T yields
VBx C Ann, U = (0), i.e,, VBz = 0 and so z € Ann,V = (0) which
implies z = 0. Then we get that UT'V € F.

LEMMA 3.1. Let M be a semi-prime I'-ring and U a non-zero ideal
of M. Then the direct sum U + AnnU belongs to F'.

PrOOF. We get that U N AnnU = (0) by Lemma 2.5(ii). Since U is
a non-zero ideal of M, AnnU is equal to zero. If (U + AnnU)l'z = (0),
where £ € M, then UT'z + AnnUTz = (0) and since AnnU = (0),
we have UT'z = (0), where z € M and so z € AnnU = B. On the
other hand, B is an ideal of M by Lemma 2.5.(i). Therefore, we get
that BI'z = (0), because UT'z + AnnUTz = (0) and UT'z = (0). So
z € AnnB and z € BN AnnB = (0) implies z = 0 which is required
proof. O
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LeMMA 3.2. Let M be a semi-prime T'-ring and U a non-zero ideal
of M. Then U € F if and only if U is essential.

PROOF. (=) Let U be in F. Then (0) # UT'V CUNV where V is
a non-zero ideal of M. Thus U is essential.

(«) Let U be essential. In this case, we get that U N AnnU = (0)
by Lemma 2.5(ii). Since U is an essential, we get AnnU = (0) and so
UeF. O

REMARK 3.3. UV € F,then UNV € F.
Let M be a semi-prime I'-ring such that MTM # M. Denote

M= {(U, ) f:U— M is aright M-module }

homomorphism for all U € F
Define a relation, “~” on M by (U, f) ~ (V,g) < AW C U NV such
that f = g on W € F. Since the set F is closed under multiplication,
it is possible to find such an ideal W € F and so “~” is an equivalence
relation. This gives a chance for us to get a partition of M. We denote
the equivalence class by Cl(U, f) = f, where

f=A{g:V->M[({Uf)~(V,9)}
and denote by @ the set of all equivalence classes. We define an addition
“+” on @ as follows:
f+a:=ClUf+ClV,g) =CUUNYV, f +9g)

where f+g¢: UNV — M is a right M-module homomorphism. Assume
that (Ul,fl) ~ (Ug,fz) and (‘/i,gl) ~ (Vg,gz). Then 3W1(E F) cupn
Us such that fi = fo and IWs(e F) C Vi N V5 such that g1 = go.
Taking W = W; N Wy and so W € F. For any w € W, we have
(f1+91)(w) = fi(w) + g1(w) = fo(w) + g2(w) = (f2 + g2)(w) and so
fi+g1 = fa+g2 in W. Therefore, (U1NV1, fi+g1) ~ (U2NVa, fa+92),
which means that the addition “+” in @ is well-defined.

Now we will prove that @ is additive abelian group. Let f = CU, f),

= Cl(V,g) and h := CI(W,h) be elements of Q. Then one can
easily check (f+§)+h = f+(@+h) and f+§ = § + f. Taking
0 := CI(M,0) where 0 : M — M,z — 0 for all z € M we have
F+0= CU(U, f) + CUM,0) = CUU N M, f +0) = CU(U, f) = f and
similarly 0+ f = f 0 is the additive identity in (). For any element
f = cuu, f) of Q, it is easy to show that —f = ClU, —-f) additive
inverse of f = CI(U, f). Therefore, (Q,+) is an abelian group. Since
MT'M # M and M is a semi-prime ['-ring, MI'M(# 0) is an ideal of
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M and so is MBM for every B(#£0) € I'. 0 # MBMTIU Cc MBM NU
where U

is a non-zero ideal of M. Therefore M (3M is essential and so MAM €
F for every 8(# 0) € I' by Lemma 3.2. We can take the homomorphism
Ipmp : MBM — M defined by 1p5(mifms) = mifmsy as non-zero M-
module homomorphism. Denote

N = {(MBM,1315) | 0 # B €T}

and define a relation, “~” on NV by 11(MBM, 1p8) =~ (MyM,1p,) &
IW = MaM(€ F) C MBM N M~M such that 1p75 = lyyon W e F.
We can easily check that “~” is an equivalence relation on A. Denote
by Cl(MﬂM 1pmg) = 8, the equivalence class containing (M BM, 14)
and by I" the set of all equivalence classes of N with respect to 117,
that is, I':= {4 | 0 # 8 € T'}. Define an addition “+” on I as follows:

B+ 4 = CUMBM, 1p15) + CUM~YM, 131,)
= CUMBM N MyM, 155+ py)

for every B(# 0),~v(s# 0) € T". Then, (f‘, +) is an abelian group. Now we
define a mapping

as follows:

8§ = CUU, [)CUMBM, 1145)CLV, g) = CU(VTMBMTU, f1r159)
where VITMBMTU € F and flppg: VIMBMIU — M, which is given
by

(flMﬁg sz')’zmzﬁnzazuz = Zg Ui ’Vzmz/@nzazuz)

is a right M-module homomorphism. Then it is routine to check that
such mapping is well-defined. Now we will show that @ is a I- -ring with
unity. Let f,gandheQand 3,5 €T, ie., f= ClU,f),§=Cl(V,qg),
h = ClUW,h), B = CH{MBM, 1mp), and 4 = Cl(M~yM, 1p.). Then

~

(f+§)Bh = CUUNYV,f+ g)CUMBM,135)CLW, h)
CI(WTMBMT(UNV),(f + 9)1rh)
= CI(WTMBMT)U N (WTMBMIV), f1ysh + glassh)
= fBh+ gbh.
and the equalities f(8+4)§ = fB3+ f43, fB(a+h) = fB3+ fBh, and
(fB§)¥h = fB(§¥h) are proved in a analogous way.
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Next we will shf)w that Q has a multiplicative identity. Let f € Q
and S €T. Take I = CI(M,I) € Q } where ] : M — M,z — z, is a
M-module homomorphism. Then

fBI = CUU, f)CUMBM, 1y5)CUM, I)
= CUMTMBMTU, fippl) = CIU, f) = f

and similarly we have | B f = f . Notice that the mapping ¢ : ' — r
defined by ¢(8) = 8 for every 0 # 3 € I'. Here the case of to be 0 # 3,
it does not mean that image of zero of I' under ¢ doesn’t map to zero
of I'. That is, ¢(0) = 0 = CI(MTM,Opp). If 3 = 0, then MBM = 0.
In this case, there is a contradiction with MM # 0. For this reason,
we get the mapping ¢ : I' — I' defined by o(B) = B for every 0 £ 3 €T
Noticing that the mapping ¢ is an isomorphism, we know that the I*-ring
Q is a I'-ring.

For a fixed element a in M and every element « in I', consider a
mapping Aey : M — M defined by Agy(z) = ayz for all z € M. It is
easy to prove that the mapping A, is a right M-module homomorphism
and so A4y is an element of ). Define a mapping ¢ : M — Q by
P(a) = a = Cl(M, Agy) for all a € M and y € T'. It is easy to prove that
the mapping ¢ is a right M-module injective homomorphism and so M
is a subring of @), and in this case, we call Q the right quotient I'-ring
of M and will be denoted by Q,.(M) (or, briefly @). One can, of course,
characterize Q;(M), the left quotient I'-ring of M in a similar manner.
For purposes of convenience, we use g instead of § € Q.

DEFINITION 3.4. Let M be a semi-prime I'-ring and @ the quotient
I[-ring of M. Then the set

Cr:={g€Q|gvf=fyg forall fe Qand yeT}
is called the generalized centroid of M.

The following theorem characterizes the quotient I'-ring @ of M. The
proof is a minor modification of the proof of the corresponding theorem
in ring theory, and we omit it.

THEOREM 3.5. Let M be a semi-prime I'-ring and () the quotient
T'-ring of M. Then the I'-ring () satisfies the following properties:

(i) For any element q € Q, there exists an ideal U; € F which is an
essential ideal with a right M-module homomorphism q : U — M,
such that q(Uy) € M (or ¢yU, C M for all y € T).

(i) If g € Q and q(Uy) = (0) for a certain U; € F (or g¢yU, = (0) for
a certain Uy € F and for all y € T'), then ¢ = 0.
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(iii) IfU € F and ¥ : U — M is a right M-module homomorphism,
then there exists an element q € Q such that ¥(u) = q(u) for all
u€U (or ¥(u) =qyu forallu € U and y € T).

(iv) Let W be a submodule (an (M, M)-sub-bimodule) in Q and ¥ :
W — @ aright M-module homomorphism. If W contains the ideal
U of the T-ring M such that ¥(U) C M and AnnU = Ann, W,
then there is an element q € @) such that ¥(b) = q(b) for any
be W (or U(b) =gvb for any b€ W and v € T) and ¢(a) =0 for
any a € Ann,W (or ¢ya =0 for any a € Ann,.W and vy € T).

Let W be a non-zero submodule of the right M-module ). Then
we get that (0 #)w € W and U, is an essential ideal of the I'- ring M
such that wyU, C M (or w(Uy,) € M) for any v € I" and so (0) #
wyUy,TwyU, € WITW, for any v € I by Theorem 3.5(i). Thus, the
right and left annihilators of the (M, M)-submodule W in @ are the
same, since the equality Ann,W = (0) implies (AnnyW)I'(AnmW) =
(0) or (Ann, W)L (Ann, W) = (0) and AnnyW = (0) implies

(Ann, W)T(Ann, W) = (0).

This property shows that it is possible to obtain similar results for left
or two-sided annihilators instead of right annihilators which are defined
in case (iv) of Theorem 3.5.

Let W satisfy the case (iv) of Theorem 3.5. Let us denote an annihi-
lator of an ideal U in M by L. Let us extend ¥ : U — M which is a right
M-module homomorphism to ¥ : L+U — M such that ¥(L) = 0, since
L+ U is an ideal of M by Lemma 2.5(i). Since the annihilator of L + U
equals zero, in this case, we find an element q in @ such that g(L) = 0 (or
gyL = (0) for all v € T') and ¥(u) = g(u) (or ¥(u) = gyu for all y € I),
where u € U, by Theorem 3.5(iii). Then, if w € W and a € UTU,, then
wfa € U and hence ¥(w)fa = ¥(wha) = g(wBa) (or ¥(wPa) = gywBa
forally,8 €T) forall 3 € I" and so (¥(w)—g(w))Ba =0forall g € T (or
(¥ (w)—gyw)Ba = 0 for all 4, 8 € T'). Therefore (¥(w)—q(w))I'U = (0).
Also, since WI'L = (0Q) by Theorem 3.5(iv), i.e., (¥(w) —g(w))I'L = (0),
which implies ¥(w) = ¢g(w) (or ¥(w) = gyw = (0) for all v € T).
If Ann,W = (0), then Ann,WTU, = (0) and so bI'U, C L, where
b € Ann,W. Consequently, g(bBU,) = 0 (or ¢ybgU, =0 for allvy,3 € T')
and so we get that g(b) = 0 (or ¢B8b = 0 for all 3 € I') by Theorem 3.5(ii),
and so we give the following proposition.

PROPOSITION 3.6. Let M be a semi-prime I'-ring and Q) the quotient
I- ring of M. If W is a non-zero submodule of the right(left) M -module
Q, then WI'W # 0. Furthermore Q) is a semi-prime I'-ring.
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DEFINITION 3.7. A I'ring M is called regular if for any element
x € M, there exists an element z' € M such that z’8zyr = z, where

v, B €T.

THEOREM 3.8. Let M be a semi-prime I'-ring and Cr the generalized
centroid of M. Then Cr is a regular I'-ring.

PROOF. Let a be an element of Cr. Then a,a? € @, and so we

get that U, and U,: are essential ideals of M and so U, N U, € F.
We consider a mapping 9 : U, NU,2 — M defined by ¢(a?Bz) = afz
for all B € I" and where z runs through the set J = U, N U,2. Let
a?Bx = 0. Then (afBz)[ MT(afBz) = 0 implies aBx = 0. Therefore 1) is
a right M-module homomorphism. Hence, there is an element a; € Q
such that ajaa?Bz = aBz for all z € J by Theorem 3.5(iii). We have
that ajaa? = a for all @ € T' by Theorem 3.5(ii). Let us prove that
the element a; in Cr. In this case, let ¢ be an arbitrary element of
Q. Then [(a10a?)?,gls = [a?,q]p where [a?,q]s = a®Bg — gBa?. Since
a € Cr, we have 0 = [a2, q]s = [(a10a?)?, ¢l = [a3aat, q]g = a*aa?, ];.
Multiplying this equality from the left by a3 (a3 = a1v1a172a1, Y1, 12 €
I), we get 0 = acfa?,qls = aalas,qlz. Thus, we get [a1,q]s = 0 by
Proposition 3.6. This completes the proof. O

REMARK 3.9. We have shown that Cr is a regular I'-ring. For any
element a € Cr, there exists an element a’ € Cr such that a’Bavya = a
for 8,7 € . If d’Baya = a’Ba® = a, then (a’Ba)? = (d/Ba)y(d’Ba) =
a'B(a'vyaBa) = d'Ba, i.e., e = a’Ba is an idempotent, and so we get eya =
a, v € I'. Therefore the Cr has a sufficient number of idempotents. Thus
in the set E of all the central idempotents the relation < defined by

€1 562<=>62’7€1=61, ’)’EF
is a partial order.

DEFINITION 3.10. Let M be a semi-prime I'-ring, ) the quotient I'-
ring of M and let S C Q. The least of idempotent elements e(S) = e €
Cr such that eys = s for all s € S, v € I is called the support of the
set S.

LEMMA 3.11. Let M be a semi-prime I'-ring, Q) the quotient I'-ring
of M and § C Q. If S has a support e(S) = e € Cr, then the equal-
ity gyMTI'S = 0 for an element q € Q (ST'M~q = 0) is equivalent to
qve(S) = 0.

PRrOOF. Let V be a (two-sided) M-submodule in Q) that is generated
by the set S. In this case, U = VN M is a (two-sided) ideal of the
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I-ring M. We proved that its annihilator in the I'-ring M coincides
with the annihilator of V in M. Now, let ¢gyU = 0. If v € V, then
vB8U, € U and so qavBU, = 0. We get gav = 0 by Theorem 3.5(iii).
By Theorem 3.5(iv), we have that for the identical mapping 1 : V — V,
there exists an element e € Q such that eyv =vforallv eV, y e T
and e annihilates the annihilator L of the set V in the I'-ring Q. This
implies that for any 1 € L, v € V, ¢ € @ and v, 8 € I the following
equalities are valid:

le,alpv(1+0) =0, (¢ —e)y(1+v) =0.

Since the annihilator of the sum L + V has a zero multiplication, we
have e € Ct and e is an idempotent by Proposition 3.6. If e; is a central
idempotent such that ejas = s for all s € S, a € T", then e;av = v for
veV,ac€landsol—e €L, 1e,

O=ey(l—e1) =e—eye; = eyey =¢
= eve=¢e(e1 €Cr) = e<e

by Remark 3.9. Finally, let ¢gyMT'S = 0, where v € I'. Then g8M is in
the annihilator of V and so ¢8M~e = 0, where v, 8 € I', which implies
MpBgvye =0 and gye = 0. This completes the proof. O

LEMMA 3.12. Let M be a semi-prime I'-ring, () the quotient I'-ring
of M and S C @ that has a support e(S) = e € Cpr. If 0 # €1 < e(5),
then e;I'S # 0.

PRroOF. If 1I'S = 0, then the idempotent f = 1 —e; adjust to fys =
s for all s € S, v € T'. Therefore f > ¢(S) > e3, ie., fve1 = €1 =0
which is a contradiction. O

Now we give the converse of Lemma 2.8 in the following.

PrROPOSITION 3.13. Let M be a semi-prime I'-ring and Cr the ex-
tended centroid of M. If Cr is a I'-field, then the I'-ring M is a prime
I'-ring.

Proor. If 2I'MT'y = 0, then we have e(z)yy = 0 for all v € T by
Lemma 3.12. Therefore we get e(x)I’MT'y = 0 and so, since Cr is [-field,
MTy = 0 which implies y = 0. Thus the proof is over. [
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