• Title/Summary/Keyword: Lower-upper solutions method

Search Result 70, Processing Time 0.019 seconds

ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE GENERALIZED MHD AND HALL-MHD SYSTEMS IN ℝn

  • Zhu, Mingxuan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.735-747
    • /
    • 2018
  • This paper deals with the asymptotic behavior of solutions to the generalized MHD and Hall-MHD systems. Firstly, the upper bound for the generalized MHD and Hall-MHD systems is investigated in $L^2$ space. Then, the effect of the Hall term is analyzed. Finally, we optimize the upper bound of decay and obtain their algebraic lower bound for the generalized MHD system by using Fourier splitting method.

EXISTENCE AND UNIQUENESS OF A SOLUTION FOR FIRST ORDER NONLINEAR LIOUVILLE-CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS

  • Nanware, J.A.;Gadsing, Madhuri N.
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.5
    • /
    • pp.1011-1020
    • /
    • 2021
  • In this paper, first order nonlinear Liouville-Caputo fractional differential equations is studied. The existence and uniqueness of a solution are investigated by using Krasnoselskii and Banach fixed point theorems and the method of lower and upper solutions. Finally, an example is given to illustrate our results.

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong;Wang, Guotao;Song, Guangxing
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.191-200
    • /
    • 2011
  • This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

THE ITERATION METHOD OF SOLVING A TYPE OF THREE-POINT BOUNDARY VALUE PROBLEM

  • Liu, Xiping;Jia, Mei
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.3_4
    • /
    • pp.475-487
    • /
    • 2009
  • This paper studies the iteration method of solving a type of second-order three-point boundary value problem with non-linear term f, which depends on the first order derivative. By using the upper and lower method, we obtain the sufficient conditions of the existence and uniqueness of solutions. Furthermore, the monotone iterative sequences generated by the method contribute to the minimum solution and the maximum solution. And the error estimate formula is also given under the condition of unique solution. We apply the solving process to a special boundary value problem, and the result is interesting.

  • PDF

THE EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF THREE-POINT p-LAPLACIAN BOUNDARY VALUE PROBLEMS WITH ONE-SIDED NAGUMO CONDITION

  • Zhang, Jianjun;Liu, Wenbin;Ni, Jinbo;Chen, Taiyong
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.209-220
    • /
    • 2007
  • In this paper, the existence and multiplicity of solutions of three-point p-Laplacian boundary value problems at resonance with one-sided Nagumo condition are studied by using degree theory and upper and lower solutions method. Some known results are improved.

AN UNSTRUCTURED STEADY COMPRESSIBLE NAVIER-STOKES SOLVER WITH IMPLICIT BOUNDARY CONDITION METHOD (내재적 경계조건 방법을 적용한 비정렬 격자 기반의 정상 압축성 Navier-Stokes 해석자)

  • Baek, C.;Kim, M.;Choi, S.;Lee, S.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.10-18
    • /
    • 2016
  • Numerical boundary conditions are as important as the governing equations when analyzing the fluid flows numerically. An explicit boundary condition method updates the solutions at the boundaries with extrapolation from the interior of the computational domain, while the implicit boundary condition method in conjunction with an implicit time integration method solves the solutions of the entire computational domain including the boundaries simultaneously. The implicit boundary condition method, therefore, is more robust than the explicit boundary condition method. In this paper, steady compressible 2-Dimensional Navier-Stokes solver is developed. We present the implicit boundary condition method coupled with LU-SGS(Lower Upper Symmetric Gauss Seidel) method. Also, the explicit boundary condition method is implemented for comparison. The preconditioning Navier-Stokes equations are solved on unstructured meshes. The numerical computations for a number of flows show that the implicit boundary condition method can give accurate solutions.

Design and Evaluation of a Hierarchical Service Management Method using Bloom Filters for Large MANETs

  • Bae, Ihn-Han
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.12
    • /
    • pp.1688-1696
    • /
    • 2008
  • We propose a hierarchical service management method using Bloom filters for large MANETs. In this paper, a MANET is comprised of logical grid hierarchy, and each mobile node within the lowest service region multicasts the Attenuated Bloom Filter (ABF) for services itself to other nodes within the region. To advertise and discovery a service efficiently, the server node of the lowest server region sends the Summary Bloom Filter (SBF) for the ABFs to the server node of upper server region. Each upper server has the set of SBFs for lower vicinity service regions. The traffic load of the proposed method is evaluated by an analytical model, and is compared with that of two alternative advertisement solutions: complete advertisement and no advertisement. As a result, we identify that the traffic load of the proposed method is much lower than that of two alternative advertisement solutions.

  • PDF

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.