• 제목/요약/키워드: Low-Dose Computed Tomography

검색결과 122건 처리시간 0.022초

치과 임프란트 치료 계획을 위한 나선형 일반 단층촬영과 전산화 단층촬영시 흡수선량 및 유효선량 평가 (Absorbed and effective dose from spiral and computed tomography for the dental implant planning)

  • 홍병희;한원정;김은경
    • Imaging Science in Dentistry
    • /
    • 제31권3호
    • /
    • pp.165-173
    • /
    • 2001
  • Objectives : To evaluate the absorbed and effective doses of spiral and computed tomography for the dental implant planning. Materials and Methods: For radiographic projection, TLD chips were placed in 22 sites of humanoid phantom to record the exposure to skin and the mean absorbed dose to bone marrow, thyroid, pituitary, parotid and submandibular glands and nesophagus. Effective dose was calculated, using the method suggested by Frederiksen et al.. Patient situations of a single tooth gap in upper and lower midline region, edentulous maxilla and mandible were simulated for spiral tomography. 35 axial slices (maxilla) and 40 axial slices (mandible) with low and standard dose setting were used for computed tomography. All the radiographic procedures were repeated three times. Results: The mean effective dose in case of maxilla was 0.865 mSv, 0.452 mSv, 0.136 mSv and 0.025 mSv, in spiral tomography of complete edentulous maxilla, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). That in case of mandible was 0.614 mSv, 0.448 mSv, 0.137 mSv and 0.036 mSv, in spiral tomography of complete edentulous mandible, computed tomography with standard mAs, computed tomography with low mAs and spiral tomography of a single tooth gap (p<0.05). Conclusions: Based on these results, it can be concluded that low mAs computed tomography is recommended instead of spiral tomography for the complete edentulous maxilla and mandible dental implant treatment planning.

  • PDF

Can ultra-low-dose computed tomography reliably diagnose and classify maxillofacial fractures in the clinical routine?

  • Gerlig Widmann;Marcel Dangl;Elisa Lutz;Bernhard Fleckenstein;Vincent Offermanns;Eva-Maria Gassner;Wolfgang Puelacher;Lukas Salbrechter
    • Imaging Science in Dentistry
    • /
    • 제53권1호
    • /
    • pp.69-75
    • /
    • 2023
  • Purpose: Maxillofacial trauma predominantly affects young adults between 20 and 40 years of age. Although radioprotection is a legal requirement, the significant potential of dose reduction in computed tomography (CT) is still underused in the clinical routine. The objective of this study was to evaluate whether maxillofacial fractures can be reliably detected and classified using ultra-low-dose CT. Materials and Methods: CT images of 123 clinical cases with maxillofacial fractures were classified by two readers using the AOCOIAC software and compared with the corresponding results from post-treatment images. In group 1, consisting of 97 patients with isolated facial trauma, pre-treatment CT images at different dose levels (volumetric computed tomography dose index: ultra-low dose, 2.6 mGy; low dose, <10 mGy; and regular dose, <20 mGy) were compared with post-treatment cone-beam computed tomography (CBCT). In group 2, consisting of 31 patients with complex midface fractures, pre-treatment shock room CT images were compared with post-treatment CT at different dose levels or CBCT. All images were presented in random order and classified by 2 readers blinded to the clinical results. All cases with an unequal classification were re-evaluated. Results: In both groups, ultra-low-dose CT had no clinically relevant effect on fracture classification. Fourteen cases in group 2 showed minor differences in the classification code, which were no longer obvious after comparing the images directly to each other. Conclusion: Ultra-low-dose CT images allowed the correct diagnosis and classification of maxillofacial fractures. These results might lead to a substantial reconsideration of current reference dose levels.

Comparison of effective dose for imaging of mandible between multi-detector CT and cone-beam CT

  • Jeong, Dae-Kyo;Lee, Sang-Chul;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-Suk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • 제42권2호
    • /
    • pp.65-70
    • /
    • 2012
  • Purpose : The aim of this study was to compare the effective dose for imaging of mandible between multi-detector computed tomography (MDCT) and cone-beam computed tomography (CBCT). An MDCT with low dose technique was also compared with them. Materials and Methods : Thermoluminescent dosimeter (TLD) chips were placed at 25 organ sites of an anthropomorphic phantom. The mandible of the phantom was exposed using 2 different types of MDCT units (Somatom Sensation 10 for standard-dose MDCT, Somatom Emotion 6 for low-dose MDCT) and 3 different CBCT units (AZ3000CT, Implagraphy, and Kavo 3D eXaM). The radiation absorbed dose was measured and the effective dose was calculated according to the ICRP 2007 report. Results : The effective dose was the highest for Somatom Sensation 10 (425.84 ${\mu}Sv$), followed by AZ3000CT (332.4 ${\mu}Sv$), Somatom Emotion 6 (199.38 ${\mu}Sv$), and 3D eXaM (111.6 ${\mu}Sv$); it was the lowest for Implagraphy (83.09 ${\mu}Sv$). The CBCT showed significant variation in dose level with different device. Conclusion : The effective doses of MDCTs were not significantly different from those of CBCTs for imaging of mandible. The effective dose of MDCT could be markedly decreased by using the low-dose technique.

저농도 조영제를 사용한 CT검사에서 저관전압 기법에 따른 유용성 평가 (Evaluation of the Low Tube Voltage in the Computed Tomography Scan Technique using a Low Concentration Contrast Agent)

  • 정강교;조평곤
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제39권1호
    • /
    • pp.71-79
    • /
    • 2016
  • 본 연구는 전산화단층검사(computed tomography; CT)에서 저농도 조영제와 저관전압 기법이 선량과 영상에 미치는 유용성을 팬텀으로 평가하였다. 조영제 농도별로 희석정도를 달리하여 실험팬텀에 삽입 후 관전압과 관전류를 단계적으로 변화하여 촬영하였고, 획득된 팬텀영상을 통해 선량과 HU를 평가하였다. 그 결과 표준조건(350 mgI/ml, 120 kV)보다 저농도 조영제와 저관전압 조건(300 mgI/ml, 100 kV)설정이 체적 선량평가(CTDIvol; computed tomography dose $index_{vol}$)에서 평균 21% 감소하였다. SNR은 저농도 조영제와 저관전압 조건이 팬텀에서 측정한 모든 깊이(center, 4.5cm, 2.25cm)의 조영제와 생리식염수를 1:10, 1:20으로 희석한 실험에서 각각 12.2(26%), 6.2(17%) 증가하였다. CNR은 각각 11.5(32%), 6.3(26%) 증가하였다. CT 검사에서 조영제 부작용 감소를 위한 저농도 조영제의 사용과 피폭선량 감소를 위한 저관전압 사용으로 영상에서 높은 감약계수를 통한 다양한 연구가 필요할 것으로 사료된다.

컴퓨터 단층촬영을 이용한 요로결석 검사에서 저선량 CT의 적용에 대한 유용성 평가 (Usability Evaluation of Applied Low-dose CT When Examining Urinary Calculus Using Computed Tomography)

  • 김현진;지태정
    • 한국콘텐츠학회논문지
    • /
    • 제17권6호
    • /
    • pp.81-85
    • /
    • 2017
  • 본 연구는 컴퓨터단층촬영을 이용한 요로결석 검사에서 저선량 CT(Low dose Computed Tomography) 프로토콜의 적용에 따른 유용성을 평가하였다. 연구대상은 2016년 6월-12월까지 부산지역 일개 의료기관을 내원한 비뇨기계 환자이며 연구에 이용된 프로토콜은 통계적 반복 재구성법(Adaptive Statistical Iterative Reconstruction, ASIR)을 50% 적용한 저선량 CT 프로토콜이다. 정량적 분석 결과 횡단면상(Axial image)의 신장의 관심 영역(region of image. ROI) 내 평균 화소 값과 표준편차는 복부촬영 프로토콜 $26.21{\pm}7.08$, 저선량 CT 프로토콜 $20.03{\pm}8.16$이며 관상면(Coronal imalge) 영상에서 신장의 관심영역 내 평균 화소 값과 표준편차는 복부촬영 프로토콜 $22.07{\pm}7.35$, 저선량 CT 프로토콜 $21.67{\pm}6.11$이었다. 정성적 분석결과 인공물에 대한 4명의 관찰자 평균값은 복부촬영 프로토콜 $19.14{\pm}0.36$, 저선량 CT 프로토콜 $19.17{\pm}0.43$이며 해상도 및 대조도의 평균값은 복부촬영 프로토콜 $19.35{\pm}0.70$, 저선량 CT 프로토콜 $19.29{\pm}0.58$이었다. 피폭선량 분석 결과 복부촬영 프로토콜의 CTDIvol 평균값은 18.02 mGy, DLP 평균값은 $887.51mGy{\cdot}cm$이며 저선량 CT 프로토콜 CTDIvol 평균값은 7.412 mGy, DLP 평균값은 $361.22mGy{\cdot}cm$이었다. 이로 인한 선량의 감소율은 각 58.82%, 59.29% 이었다.

최근 개발된 cone beam computed tomography의 흡수선량 및 유효선량 평가 (Absorbed and effective dose from newly developed cone beam computed tomography in Korea)

  • 이종녕;한원정;김은경
    • Imaging Science in Dentistry
    • /
    • 제37권2호
    • /
    • pp.93-102
    • /
    • 2007
  • Purpose: Cone beam computed tomography (CBCT) provides a lower dose and cost alternative to conventional CT, promising to revolutionize the practice of oral and maxillofacial radiology. The purpose of this study was to evaluate the absorbed and effective doses of Implagraphy and VCT (Vatech Co., Hwasung, Korea) and compare them with those of panoramic radiography. Materials and Methods: Thermoluminescent dosimeter (TLD) chips were placed at 27 sites throughout the layers of Female ART Head and Neck Phantom for dosimetry. Implagraphy, VCT units, and Planmeca Proline XC panoramic unit were used for radiation exposures. Radiation weighted doses and effective doses were measured and calculated using 1990 and 2005 ICRP tissue weighting factors. Results: Effective doses in Sv (ICRP 2005, ICRP 1990) were 90.19, 61.62 for Implagraphy at maxillay molar area, 123.20, 90.02 for Implagraphy at mandibular molar area, 183.55, 139.26 for VCT and 40.92, 27.16 for panoramic radiography. Conclusion: Effective doses for VCT and Implagraphy were only about 2.2 to 4.5 times greater than those for panoramic radiography. VCT and Implagraphy, CBCT machines recently developed in Korea, showed moderately low effective doses.

  • PDF

Synthetic Computed Tomography Generation while Preserving Metallic Markers for Three-Dimensional Intracavitary Radiotherapy: Preliminary Study

  • Jin, Hyeongmin;Kang, Seonghee;Kang, Hyun-Cheol;Choi, Chang Heon
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.172-178
    • /
    • 2021
  • Purpose: This study aimed to develop a deep learning architecture combining two task models to generate synthetic computed tomography (sCT) images from low-tesla magnetic resonance (MR) images to improve metallic marker visibility. Methods: Twenty-three patients with cervical cancer treated with intracavitary radiotherapy (ICR) were retrospectively enrolled, and images were acquired using both a computed tomography (CT) scanner and a low-tesla MR machine. The CT images were aligned to the corresponding MR images using a deformable registration, and the metallic dummy source markers were delineated using threshold-based segmentation followed by manual modification. The deformed CT (dCT), MR, and segmentation mask pairs were used for training and testing. The sCT generation model has a cascaded three-dimensional (3D) U-Net-based architecture that converts MR images to CT images and segments the metallic marker. The performance of the model was evaluated with intensity-based comparison metrics. Results: The proposed model with segmentation loss outperformed the 3D U-Net in terms of errors between the sCT and dCT. The structural similarity score difference was not significant. Conclusions: Our study shows the two-task-based deep learning models for generating the sCT images using low-tesla MR images for 3D ICR. This approach will be useful to the MR-only workflow in high-dose-rate brachytherapy.

Therapeutic Advantages of Treatment of High-Dose Curcumin in the Ovariectomized Rat

  • Cho, Dae-Chul;Jung, Hyun-Sik;Kim, Kyoung-Tae;Jeon, Younghoon;Sung, Joo-Kyung;Hwang, Jeong-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • 제54권6호
    • /
    • pp.461-466
    • /
    • 2013
  • Objective : Although curcumin has a protective effect on bone remodeling, appropriate therapeutic concentrations of curcumin are not well known as therapeutic drugs for osteoporosis. The purpose of this study was to compare the bone sparing effect of treatment of low-dose and high-dose curcumin after ovariectomy in rats. Methods : Forty female Sprague-Dawley rats underwent either a sham operation (the sham group) or bilateral ovariectomy (OVX). The ovariectomized animals were randomly distributed among three groups; untreated OVX group, low-dose (10 mg/kg) curcumin administered group, and high-dose (50 mg/kg) curcumin group. At 4 and 8 weeks after surgery, serum biochemical markers of bone turnover were analyzed. Bone histomorphometric parameters of the 4th lumbar vertebrae were determined by micro-computed tomography (CT). In addition, mechanical strength was determined by a three-point bending test. Results : High-dose curcumin group showed significantly lower osteocalcin, alkaline phosphatase, and the telopeptide fragment of type I collagen C-terminus concentration at 4 and 8 weeks compared with the untreated OVX group as well as low-dose curcumin group. In the analyses of micro-CT scans of 4th lumbar vertebrae, the high-dose curcumin treated group showed a significant increase in bone mineral densities (p=0.028) and cortical bone mineral densities (p=0.036) compared with the low-dose curcumin treated group. Only high-dose curcumin treated group had a significant increase of mechanical strength compared with the untreated OVX group (p=0.015). Conclusion : The present study results demonstrat that a high-dose curcumin has therapeutic advantages over a low-dose curcumin of an antiresorptive effect on bone remodeling and improving bone mechanical strength.

Depth Dose According to Depth during Cone Beam Computed Tomography Acquisition and Dose Assessment in the Orbital Area Using a Three-Dimensional Printer

  • Min Ho Choi;Dong Yeon Lee;Yeong Rok Kang;Hyo Jin Kim
    • Journal of Radiation Protection and Research
    • /
    • 제49권2호
    • /
    • pp.68-77
    • /
    • 2024
  • Background: Cone beam computed tomography (CBCT) is essential for correcting and verifying patient position before radiation therapy. However, it poses additional radiation exposure during CBCT scans. Therefore, this study aimed to evaluate radiological safety for the human body through dose assessment for CBCT. Materials and Methods: For CBCT dose assessment, the depth dose was evaluated using a cheese phantom, and the dose in the orbital area was evaluated using a human body phantom self-fabricated with a three-dimensional printer. Results and Discussion: The evaluation of radiation doses revealed maximum doses of 14.14 mGy and minimum doses of 6.12 mGy for pelvic imaging conditions. For chest imaging conditions, the maximum doses were 4.82 mGy, and the minimum doses were 2.35 mGy. Head imaging conditions showed maximum doses of 1.46 mGy and minimum doses of 0.39 mGy. The eyeball doses using a human body phantom model averaged at 2.11 mGy on the left and 2.19 mGy on the right. The depth dose ranged between 0.39 mGy and 14.14 mGy, depending on the change in depth for each imaging mode, and the average dose in the orbit area using a human body phantom was 2.15 mGy. Conclusion: Based on the experimental results, CBCT did not significantly affect the radiation dose. However, it is important to maintain a minimal radiation dose to optimize radiation protection following the as low as reasonable achievable principle.