• Title/Summary/Keyword: Low speed vehicle

Search Result 449, Processing Time 0.024 seconds

VEHICLE CRASH ANALYSIS FOR AIRBAG DEPLOYMENT DECISION

  • Hussain, A.;Hannan, M.A.;Mohamed, A.;Sanusi, H.;Ariffin, A.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.179-185
    • /
    • 2006
  • Airbag deployment has been responsible for huge death, incidental injuries and broken bones due to low crash severity and wrong deployment decision. This misfortune has led the authorities and the industries to pursue uniquely designed airbags incorporating crash-sensing technologies. This paper provides a thorough discussion underlying crash sensing algorithm approaches for the subject matter. Unfortunately, most algorithms used for crash sensing still have some problems. They either deploy at low severity or fail to trigger the airbag on time. In this work, the crash-sensing algorithm is studied by analyzing the data obtained from the variables such as (i) change of velocity, (ii) speed of the vehicle and (iii) acceleration. The change of velocity is used to detect crash while speed of the vehicle provides relevant information for deployment decision. This paper also demonstrates crash severity with respect to the changing speed of the vehicle. Crash sensing simulations were carried out using Simulink, Stateflow, SimMechanics and Virtual Reality toolboxes. These toolboxes are also used to validate the results obtained from the simulated experiments of crash sensing, airbag deployment decision and its crash severity detection of the proposed system.

Air Pollutant Emission Characteristics of a Light Duty Diesel Vehicle Affected by Road Infrastructure Improvement and Traffic flow Changes (도로 기반시설 개선과 교통흐름 변화에 따른 소형 경유자동차의 대기오염물질 배출특성)

  • keel, Jihoon;Lee, Taewoo;Lee, Sangeun;Jung, Sungwoon;Yun, Boseop;Kim, Jeongsoo;Choi, Kwangho
    • Journal of ILASS-Korea
    • /
    • v.21 no.4
    • /
    • pp.214-222
    • /
    • 2016
  • Changes in road infrastructure affect driving patterns and pollutant emission characteristics. we analyzed the changes in driving patterns and pollutant emission characteristics of the driving route via measured driving patterns at year 2009 and 2016. Since 2009, there has been an increase in population and traffic demand, including residential areas and industrial facilities. Traffic conditions were improved such as the opening of the highway Inter-Change to Seoul and the construction of underground driveway. As a result, the average vehicle speed increased. More detail comparisons have made on the changes of the underground driveway section and the crossroad section, which are expected to have significant changes in the transportation infrastructure. The vehicle speed distribution of the underground driveway changed from low speed to high speed, and the increase of the time spent at the high speed and high load caused the increase of NOx emissions. The vehicle speed also increased at the crossroad section, and the consequence NOx and $CO_2$ emissions decreased. It is mainly because the decreased time spent at idle, which results from the proper traffic demand management at this area.

Structural Analysis and Optimization of a Low Speed Vehicle Body (저속차량 차체의 구조해석 및 구조최적설계)

  • 신정규;심진욱;황상진;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.68-78
    • /
    • 2003
  • Recently, low speed vehicle (LSV) is beginning to appear for various usages. The body of the LSV is usually made of the aluminum space frame (ASF) type rather than the monocoque or unitary construction type. A pa.1 of the reason is that it is easier to reduce mass efficiently while the required stiffness and strength are maintained. A design flow for LSV is proposed. Design specifications for structural performances of LSV do not exist yet. Therefore, they are defined through a comparative study with general passenger automobiles. An optimization problem is formulated by the defined specifications. At first, one pillar which has an important role in structural performances is selected and the reinforcements of the pillar are determined from topology optimization to maximize the stiffness. At second, the thicknesses of cross sections are determined to minimize the mass of the body while design specifications are satisfied. The optimum solution is compared with an existing design. The optimization process has been performed using a commercial optimization software system, GENESIS 7.0.

Development of Swimming Mechanism and Algorithm for Fish-Type Underwater Robot(1) (물고기형 수중로봇의 유영메커니즘 및 알고리즘 개발(1))

  • Ryuh, Young-Sun
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Generally, underwater vehicle type of propeller shows low efficiency about 50%-55%. However, the efficiency of swimming mechanism of a fish is 60%-70%, more efficient about 20% than screw propellers. Recently, research of underwater vehicle type of fish increase due to its good efficiency and is regarded as a typical bio-mimical robot. In this research, a new algorithm and mechanism that show low energy consumption imitating swimming mechanism of fish proposed increasing speed and running time in field trial.

  • PDF

Research on the motion characteristics of a trans-media vehicle when entering water obliquely at low speed

  • Li, Yong-li;Feng, Jin-fu;Hu, Jun-hua;Yang, Jian
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.188-200
    • /
    • 2018
  • This paper proposes a single control strategy to solve the problem of trans-media vehicle difficult control. The proposed control strategy is just to control the vehicle's air navigation, but not to control the underwater navigation. The hydrodynamic model of a vehicle when entering water obliquely at low speed has been founded to analyze the motion characteristics. Two methods have been used to simulate the vehicle entering water in the same condition: numerical simulation method and theoretical model solving method. And the results of the two methods can validate the hydrodynamic model founded in this paper. The entering water motion in the conditions of different velocity, different angle, and different attack angle has been simulated by this hydrodynamic model and the simulation has been analyzed. And the change rule of the vehicle's gestures and position when entering water has been obtained by analysis. This entering water rule will guide the follow-up of a series of research, such as the underwater navigation, the exiting water process and so on.

Some Effects on AT Vehicle's Sudden Acceleration due to Stepping Motor for Compensation of Idle Speed (공회전속도 조절용 스텝모터가 AT차량의 급발진 현상에 미치는 영향)

  • Kim, Jong-Il;Cha, Jeong-Yeun;Son, Joeong-Bae
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.879-885
    • /
    • 2000
  • This study is carried out to make clear the reason of occurrence of sudden acceleration incident of AT vehicle. The stepping motor is used to control the engine speed at idle by compensating the volume of air. By the way it's valve is contaminated by blow-by gas, deposit and back fire etc. This contamination could occur the load of motor at low temperature. This plays an important role in damaging the motor's coil with the motor's performance interfered. If it's coil is damaged the ISC could malfunction. If these phenomena occur, the speed of engine may increase or the engine may stall with hunting.

  • PDF

Motion Analysis of Head and Neck of Human Volunteers in Low-Speed Rear Impact (저속 후방 추돌 자원자 실험을 통한 두부와 경부의 동작분석)

  • Hong, Seong Woo;Park, Won-Pil;Park, Sung-Ji;You, Jae-Ho;Kong, Sejin;Kim, Hansung
    • Journal of Auto-vehicle Safety Association
    • /
    • v.4 no.2
    • /
    • pp.37-43
    • /
    • 2012
  • The purpose of this research is to obtain and analyze dynamic responses from human volunteers for the development of the human-like mechanical or mathematical model for Korean males in automotive rear collisions. This paper focused on the introduction to a low-speed rear impact sled test involving Korean male subjects, and the accumulation of the motion of head and neck. A total of 50 dynamic rear impact sled tests were performed with 50 human volunteers, who are 30-50 year-old males. Each subject can be involved in only one case to prevent any injury in which he was exposed to the impulse that was equivalent to a low-speed rear-end collision of cars at 5-8 km/h for change of velocity, so called, ${\Delta}V$. All subjects were examined by an orthopedist to qualify for the test through the medical check-up of their necks and low backs prior to the test. The impact device is the pendulum type, tuned to simulate the crash pulse of a real vehicle. All motions and impulses were captured and measured by motion capture systems and pressure sensors on the seat. Dynamic responses of head and T1 were analyzed in two cases(5 km/h, 8 km/h) to compare with the results in the previous studies. After the experiments, human subjects were examined to check up any change in the post medical analysis. As a result, there was no change in MRI and no injury reported. Six subjects experienced a minor stiffness on their back for no more than 2 days and got back to normal without any medical treatment.

Linearized Dynamic Analysis of a Four-Wheel Steering Vehicle (Bicycle 모델을 이용한 4륜 조향 차량의 동력학 해석)

  • Lee, Y.H.;Kim, S.I.;Suh, M.W.;Son, H.S.;Kim, S.H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.5
    • /
    • pp.101-109
    • /
    • 1994
  • Recently, four-wheel steering systems have been developed and studied as one of the latest automotive technologies for improving the handling characteristics of a vehicle. In much of the proposed four-wheel steering systems, the side slip angle at the vehicle's center of gravity is maintained at zero. This approach allows the greater maneuverability at low speed by means of counter-phase rear steering and the improved stability at high speed through same-phase rear steering. In this paper, the effects of several four-wheel steering systems are studied and discussed on the responsiveness and stability of the vehicle by using the linear analysis. Especially, the effects of the cornering stiffnesses of both front and rear wheels are investigated on the yaw velocity gain and critical speed of the vehicle.

  • PDF

Development of Two-Lane Car-Following Model to Generate More Realistic Headway Behavior (보다 현실적인 차두시간 행태 구현을 위한 2차로 차량추종모형 개발)

  • Yoon, Byoung Jo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.5
    • /
    • pp.1999-2007
    • /
    • 2013
  • The key characteristics of two-lane-and-two-way traffic flow are platoon and overtaking caused by low-speed vehicle such as truck. In order to develop two-way traffic flow model comprised of CF(car-following) and overtaking model, it is essential to develop a car-following model which is suitable to two-way traffic flow. Short distance between vehicles is caused when a high-speed vehicle tailgates and overtakes foregoing low-speed vehicle on two-way road system. And a vehicle following low-speed vehicle decides to overtake the front low-speed vehicle using suitable space within the headway distribution of opposite traffic flow. For this reason, a two-way CF model should describes not only running within short gap but also headway distribution. Additionally considering domestic two-way-road size, there is a on-going need for large-network simulation, but there are few studies for two-way CF model. In this paper, a two-way CA model is developed, which explains two-way CF behavior more realistic and can be applied for large road network. The experimental results show that the developed model mimics stop-and-go phenomenon, one of features of congested traffic flow, and efficiently generates the distribution of headway. When the CF model is integrated with overtaking model, it is, therefore, expected that two-way traffic flow can be explained more realistically than before.

The Real Time Measurement of Dynamic Radius and Slip Ratio at the Vehicle (차량에서 실시간 동반경 및 슬립율 측정)

  • Lee, Dong-Kyu;Park, Jin-Il;Lee, Jong-Hwa
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.89-94
    • /
    • 2006
  • The tire delivering power generated from engine to the ground pulls a vehicle to move. Radius of tires is changeable due to elasticity that depends on the speed of vehicle and traction force. The main objectives on this study are real time measurement of dynamic radius and slip ratio according to the speed and traction force. The dynamic radius is proportional to speed and traction force. According to measurement, the dynamic radius is increased about 3mm under 100km/h compared to stop. It is also increased about 1.5mm when a traction force is supplied as much as 4kN compared to no load state at low speed. There is no strong relationship between slip ratio and vehicle speed. The slip ratio is measured up to 4% under WOT at first stage gear. Through this research, the method of measuring dynamic radius and slip ratio is set up and is expected to be applied to the measurement of traction force in chassis dynamometer or accelerating and climbing ability.