• 제목/요약/키워드: Low output current ripple

검색결과 121건 처리시간 0.031초

3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감 (Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter)

  • 조대현;김석민;이교범
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.867-876
    • /
    • 2020
  • 본 논문에서는 3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감을 제안한다. 고주파 전압 주입 기반의 센서리스 제어는 IPMSM의 저속 영역에서 일반적으로 사용하는 센서리스 제어 기법이다. 고주파 전압 주입을 이용한 IPMSM의 센서리스 제어 과정에서 중성점에서의 전압 리플이 증가하는 문제가 발생한다. 중성점에서의 큰 전압 리플은 출력 전류를 왜곡시킬 뿐만 아니라 직류단 커패시터의 수명을 단축시키므로 저감되어야 한다. 본 논문에서 제안하는 기법은 지령 전압에 적절한 값을 보상하여 중성점 전압 리플을 저감하며, 보상값은 지령 전압과 전류를 이용하여 간단히 계산한다. 제안하는 중성점 전압 리플 저감 기법의 타당성은 시뮬레이션을 통해 검증한다.

출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계 (Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function)

  • 송기남;한석붕
    • 한국전기전자재료학회논문지
    • /
    • 제23권8호
    • /
    • pp.593-600
    • /
    • 2010
  • In this paper, High brightness LED (light-emitting diodes) driver IC (integrated circuit) using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET (metal oxide semiconductor field effect transistor) from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. To confirm the functioning and characteristics of our proposed LED driver IC, we designed a buck converter. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses 1.0 ${\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre (Cadence) simulation.

출력전류 제어 기능이 향상된 고휘도 LED 구동 IC 설계 (Design of the High Brightness LED Driver IC with Enhanced the Output Current Control Function)

  • 한석붕;송기남
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.9-9
    • /
    • 2010
  • In this paper, High Brightness LED driver IC using new current sensing circuit is proposed. This LED driver IC can provide a constant current with high current precision over a wide input voltage range. The proposed current-sensing circuit is composed of a cascode current sensor and a current comparator with only one reference voltage. This IC minimizes the voltage stress of the MOSFET from the maximum input voltage and has low power consumption and chip area by using simple-structured comparator and minimum bias current. The LED current ripple of the designed IC is in ${\pm}5%$ and a tolerance of the average LED current is lower than 2.43%. This shows much improved feature than the previous method. Also, protections for input voltage and operating temperature are designed to improve the reliability of the designed IC. Designed LED driver IC uses $1{\mu}m$ X-Fab. BiCMOS process parameters and electrical characteristics and functioning are verified by spectre(Cadence) simulation.

  • PDF

HID 램프 디지털 안정기의 제작 (Implementation of a Digital Ballast for HID Lamps)

  • 이치환
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2003년도 학술대회논문집
    • /
    • pp.31-35
    • /
    • 2003
  • This paper presents a microprocessor controlled digital ballast for HID lamps, which gives intelligent features such as a precise power control, optimum ignition voltage and detection of end of life. Average current mode PFC is employed for reducing EMI and a universal input. Direct spread spectrum is done by applying 1 KHz triangular wave for removing acoustic resonance. This frequency modulation of 1 KHz gives also low EMI level and no ripple on lamp current. The microprocessor controls the voltage of DC-bus, the voltage of ignition pulses, the power of output and the bandwidth of spread spectrum. A 250W digital ballast is implemented with an efficiency of 93% and a maximum EMI level of 55 ㏈${\mu}$V.

  • PDF

IPMSM 파라미터 변화에 영향 받지 않는 데드타임 및 인버터 비선형성 보상기법 (Compensation Scheme for Dead Time and Inverter Nonlinearity Insensitive to IPMSM Parameter Variations)

  • 박동민;김경화
    • 전력전자학회논문지
    • /
    • 제17권3호
    • /
    • pp.213-221
    • /
    • 2012
  • In a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive, a dead time is inserted to prevent a breakdown of switching device caused by the short-circuit of DC link. This distorts the inverter output voltage resulting in a current distortion and torque ripple. In addition to the dead time, nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The voltage disturbance caused by the dead time and inverter nonlinearity directly influences on the inverter output performance, and it is known to be more severe at low speed. In this paper, a new compensation scheme for the dead time and inverter nonlinearity under the parameter variation is proposed for a PWM inverter-fed IPMSM drive. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments.

FCEV 구동용 DC-DC 컨버터 가변 DC-link 전압 제어에 의한 PWM 인버터의 전류 왜곡 저감 (Reduction of Current Distortion in PWM Inverter by Variable DC-link Voltage of DC-DC Converter for FCEV)

  • 고안열;김도윤;이정효;김영렬;원충연
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.572-581
    • /
    • 2014
  • A design and control method of DC/DC converter, which can control variable DC-link voltage to drive a fuel cell electric vehicle (FCEV), is proposed in this study. Given that a fuel cell has low-voltage and high-current characteristics, the required voltage for operating motor must be output through the DC/DC boost converter in the system to drive an FCEV. The proposed converter can choose the output voltage of battery or fuel cell in consideration of the driving mode, as well as control DC-link voltage in accordance with the back electromotive force. The switching lag-time to prevent shortage of pulse-width modulation inverter arms makes distorted current waveform caused by voltage distortion. Through this control method, the proposed converter can reduce the output voltage distortion and current ripple of the inverter, thereby reducing the distorted torque. Simulations and experimental results are presented to verify the reliability of the proposed DC/DC converter.

LC 공진 필터를 이용한 전해 커패시터 없는 LED 구동용 PFC CCM 플라이백 컨버터의 출력 전류 리플 저감에 관한 연구 (The Study of Ripple Reduction of the PFC CCM Flyback Converter without Electrolytic Capacitor for LED Lightings using LC Resonant Filter)

  • 김춘택;김영석
    • 전기학회논문지
    • /
    • 제65권4호
    • /
    • pp.601-610
    • /
    • 2016
  • The light-emitting diode (LED) has been used in a variety of industrial fields and for general 0lighting purposes on account of its high efficiency, low power consumption and long lifespan. The LED is driven by direct current; therefore, an AC/DC converter is typically required for its use. An electrolytic capacitor is generally used for stabilizing DC voltage during use of the AC/DC converter. However, this capacitor has a short lifespan, which makes it a limiting factor in LED lighting. Furthermore, LED lighting requires a dimmable control to enable energy savings and fulfil a growing consumer demand. In this paper, the dimmable single-stage power factor correction (PFC) continuous conduction mode (CCM) flyback converter that employs no electrolytic capacitor is presented. The LC resonant filter is alternatively applied to reduce the 120[Hz] ripple on the output. And the optimum value of the LC resonant filter parameters considering both efficient and performance is analysed. Simulation and experimental results verify the satisfactory operation of the converter.

Analysis and Design of a DC-Side Symmetrical Class-D ZCS Rectifier for the PFC of Lighting Applications

  • Ekkaravarodome, Chainarin;Thounthong, Phatiphat;Jirasereeamornkul, Kamon;Higuchi, Kohji
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.621-633
    • /
    • 2015
  • This paper proposes the analysis and design of a DC-side symmetrical zero-current-switching (ZCS) Class-D current-source driven resonant rectifier to improve the low power-factor and high line current harmonic distortion of lighting applications. An analysis of the junction capacitance effect of Class-D ZCS rectifier diodes, which has a significant impact on line current harmonic distortion, is discussed in this paper. The design procedure is based on the principle of the symmetrical Class-D ZCS rectifier, which ensures more accurate results and provides a more systematic and feasible analysis methodology. Improvement in the power quality is achieved by using the output characteristics of the DC-side Class-D ZCS rectifier, which is inserted between the front-end bridge-rectifier and the bulk-filter capacitor. By using this symmetrical topology, the conduction angle of the bridge-rectifier diode current is increased and the low line harmonic distortion and power-factor near unity were naturally achieved. The peak and ripple values of the line current are also reduced, which allows for a reduced filter-inductor volume of the electromagnetic interference (EMI) filter. In addition, low-cost standard-recovery diodes can be employed as a bridge-rectifier. The validity of the theoretical analysis is confirmed by simulation and experimental results.

새로운 200 MHz CMOS 선형 트랜스컨덕터와 이를 이용한 20 MHz 일립틱 여파기의 설계 (Design of a Novel 200 MHz CMOS Linear Transconductor and Its Application to a 20 MHz Elliptic Filter)

  • 박희종;차형우;정원섭
    • 전자공학회논문지SC
    • /
    • 제38권4호
    • /
    • pp.20-30
    • /
    • 2001
  • 트랜스리니어 셀을 이용한 새로운 200 MHz CMOS 트랜스컨덕터를 제안하였다. 제안한 트랜스컨덕터는 트랜스리니어 셀에 기초를 둔 전압 폴로워 및 전류 폴로워와 하나의 저항기로 구성된다. 트랜스컨덕터의 폭 넓은 응용을 위해, 단일-입력 단일-출력, 단일-입력 차동-출력, 그리고 완전-차동 트랜스컨덕터를 각각 체계적으로 설계하였다. 컴퓨터 시뮬레이션의 결과, 완전-차동 트랜스컨덕터는 ${\pm}3$ V의 공급 전압에서 ${\pm}2.7$ V의 입력 선형 범위, 200 MHz의 3-dB 주파수, 그리고 41 $ppm/^{\circ}C$ 이하의 온도 계수를· 가진다는 것을 확인하였다. 완선-차동 트랜스컨덕터의 응용성을 확인하기 위해, 인덕턴스 시뮬레이션 방식에 기초한 3차 사다리형 일립틱 저역-통과 여파기를 설계하였다. 설계된 저역-통과 여파기는 22 MHz의 리플 대역폭파 0.36 dB의 통과 대역 리플, 그리고 26 MHz의 차단 주파수를 가진다.

  • PDF

슬라이딩 모우드를 이용한 유도전동기 위치제어에서의 Chattering 저감에 관한 연구 (A Study on reduction of chattering in position control of induction motoer using sliding mode)

  • 박민호;김경서;김영렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.93-97
    • /
    • 1988
  • The sliding mode control is an effective method to establish robustness against parameter variations and disturbance. But, in sliding mode strategy, the control function is discontinuous on the hyperplane. Consequently, the control input chatters at high frequency. When we apply such a control to the induction motor drive system, that causes a torque ripple and current harmonics, which are harmful to the system. In this paper, we introduce a low pass filter between sliding mode control output and driver input to overcome that problem. The band-width of this filter is varied according to the error funtion to improve transient responses.

  • PDF