• Title/Summary/Keyword: Low energy process

Search Result 1,883, Processing Time 0.033 seconds

Low-energy interband transition effects on extended Drude model analysis of optical data of correlated electron system

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.6-12
    • /
    • 2019
  • Extended Drude model has been used to obtain information of correlations from measured optical spectra of strongly correlated electron systems. The optical self-energy can be defined by the extended Drude model formalism. One can extract the optical self-energy and the electron-boson spectral density function from measured reflectance spectra using a well-developed usual process, which is consistent with several steps including the extended Drude model and generalized Allen's formulas. Here we used a reverse process of the usual process to investigate the extended Drude analysis when an additional low-energy interband transition is included. We considered two typical electron-boson spectral density model functions for two different (normal and d-wave superconducting) material states. Our results show that the low-energy interband transition might give significant effects on the electron-boson spectral density function obtained using the usual process. However, we expect that the low-energy interband transition can be removed from measured spectra in a proper way if the transition is well-defined or well-known.

Particle Attrition Characteristics in a Bubbling Fluidized Bed Under High Temperature and High Pressure Conditions (고온 고압 조건하의 기포유동층 반응기에서의 입자 마모특성)

  • Moon, Jong-Ho;Lee, Dong-Ho;Ryu, Ho-Jung;Park, Young Cheol;Lee, Jong-Seop;Min, Byoung-Moo;Jin, Gyoung Tae
    • Clean Technology
    • /
    • v.20 no.4
    • /
    • pp.359-366
    • /
    • 2014
  • Attrition characteristics of PKM1-SU particles, $CO_2$ absorbents for pre-combustion $CO_2$ capture process, and FCC particles, catalytic particles for hydro cracking of crude oil, were investigated at high temperature and high pressure conditions. Particle attrition tests were executed at various kinds of temperature ($0-400^{\circ}C$) and pressure (0-20 bar) conditions in a cylinder type bubbling fluidized bed with 15.1 cm diameter, 120 cm height and 1 mm orifice-sparger tube. Attrited particles before and after tests were analyzed by BET, optical microscopy, and particle size analyzer. Effects of bed material height (solid inventory) and steam injection were also verified by using ASTM D5757-95, conventional attrition test method.

Stabilization of Modified Deceleration Mode for Improvement of Low-energy Ion Implantation Process (저 에너지 이온 주입의 개선을 위한 변형된 감속모드 이온 주입의 안정화 특성)

  • 서용진;박창준;김상용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • As the integrated circuit device shrinks to the deep submicron regime, the ion implantation process with high ion dose has been attracted beyond the conventional ion implantation technology. In particular, for the case of boron ion implantation with low energy and high dose, the stabilization and throughput of semiconductor chip manufacturing are decreasing because of trouble due to the machine conditions and beam turning of ion implanter system. In this paper, we focused to the improved characteristics of processing conditions of ion implantation equipment through the modified deceleration mode. Thus, our modified recipe with low energy and high ion dose can be directly apply in the semiconductor manufacturing process without any degradation of stability and throughput.

Parametric Study of Picosecond Laser Hole Drilling for TSV (피코초 레이저의 공정변수에 따른 TSV 드릴링 특성연구)

  • Shin, Dong-Sig;Suh, Jeong;Kim, Jeng-O
    • Laser Solutions
    • /
    • v.13 no.4
    • /
    • pp.7-13
    • /
    • 2010
  • Today, the most common process for generating Through Silicon Vias (TSVs) for 3D ICs is Deep Reactive Ion Etching (DRIE), which allows for high aspect ratio blind holes with low surface roughness. However, the DRIE process requires a vacuum environment and the use of expensive masks. The advantage of using lasers for TSV drilling is the higher flexibility they allow during manufacturing, because neither vacuum nor lithography or masks arc required and because lasers can be applied even to metal and to dielectric layers other than silicon. However, conventional nanosecond lasers have the disadvantage of causing heat affection around the target area. By contrast, the use of a picosecond laser enables the precise generation of TSVs with less heat affected zone. In this study, we conducted a comparison of thermalization effects around laser-drilled holes when using a picosecond laser set for a high pulse energy range and a low pulse energy range. Notably, the low pulse energy picosecond laser process reduced the experimentally recast layer, surface debris and melts around the hole better than the high pulse energy process.

  • PDF

Balanced Cluster-based Multi-hop Routing in Sensor Networks (센서 네트워크의 균등분포 클러스터 기반 멀티홉 라우팅)

  • Wu, Mary
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.910-917
    • /
    • 2016
  • Sensors have limited resources in sensor networks, so efficient use of energy is important. Representative clustering methods, LEACH, LEACHC, TEEN generally use direct transmission methods from cluster headers to the sink node to pass collected data. However, the communication distance of the sensor nodes at low cost and at low power is not long, it requires a data transfer through the multi-hop to transmit data to the sink node. In the existing cluster-based sensor network studies, cluster process and route selection process are performed separately in order to configure the routing path to the sink node. In this paper, in order to use the energy of the sensor nodes that have limited resources efficiently, a cluster-based multi-hop routing protocol which merges the clustering process and routing process is proposed. And the proposed method complements the problem of uneven cluster creation that may occur in probabilistic cluster methods and increases the energy efficiency of whole sensor nodes.

Molecular Dynamics study of Aluminum growth using Aluminum Cluster Deposition (알루미늄 덩어리를 사용한 알루미늄 성장에 관한 분자동력학 연구)

  • J.W. Kang;K.R. Byun;W.H. Mun;E.S. Kang;H.J. Hwang
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.306-309
    • /
    • 2000
  • In this work, we investigated A1 cluster deposition on Al (100) surface using molecular dynamics simulation. A result of simulations showed that large cluster with low energy was proper for good surfaced-films without craters at the low temperatures. We investigated the maximum substrate temperature and the time taken for substrate temperature to reach its maximum as a function of cluster size in the case of the same total energy and in the case of the same energy Per atom. The correlated collisions play an important role in interaction between energetic cluster and surface, and as cluster size and cluster energy increases, the correlated collisions effect affects interaction between energetic cluster and surface.

  • PDF

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Microstructure of W-Cu Composite Powders with Variation of Milling Method during Mechanochemical Process (기계화학적 공정의 밀링 방법에 따른 W-Cu 복합분말의 미세조직)

  • 이강원;김길수;김대건;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.329-335
    • /
    • 2002
  • Recently, the fabrication process of the W-Cu nanocomposite powders has been studied to improve the sinterability through the mechanical alloying and reduction of W and Cu oxide mixtures. In this study. the W-Cu composites were produced by mechanochemical process (MCP) using $WO_3-CuO$ mixtures with two different milling types of low and high energy, respectively. These ball-milled mixtures were reduced in $H_2$ atmosphere. The ball-milled and reduced powders were analyzed through XRD, SEM and TEM. The fine W-Cu powder could be obtained by the high energy ball-milling (HM) compared with the large Cu-cored structure powder by the low energy ball-milling (LM). After the HM for 20h, the W grain size of the reduced W-Cu powder was about 20-30 nm.

Cost effective and low energy consuming hydrothermal synthesis of Ni based MOF

  • Israr, Farrukh;Kim, Duk Kyung;Kim, Yeongmin;Oh, Seung Jin;Ng, Kim Choon;Chun, Wongee
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.51-54
    • /
    • 2015
  • The mesoporous metal organic framework structure of Ni-BTC was successfully synthesized in a low temperature and short operation time via hydrothermal synthesis process. Such operational route virtuously consumed less electrical and thermal energy. It proved time saving along with acceptable product yield (38%). The product was characterized through FESEM, FT-IR, XRD and $N_2$ gas adsorption measurement. Hightemperature stability of synthesized MOF was gauged by diffraction indexing of XRD patterns of as synthesized and heat treated samples of MOFs. The mathematically calculated particle size of Ni-BTC was found to be 42nm.