The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.
우리나라의 섬유산업 중 염색가공 분야는 에너지 다소비 업종으로, 노동 집약적 특성에 따라 원단위 생산성이 낮고, 대부분 중소·영세기업 특징이 있다. 염색 원단의 불량률이 높아지면 재염색으로 인한 생산단가 상승과 초과 에너지 투입으로 비용이 증가하기 때문에, 불량률을 최소를 통한 생산량 향상이 초점이었다. 또한 고온고압의 환경에서 이루어지는 염색공정은 사고 위험으로 염색기 원단 투입구를 실시간으로 개방할 수 없기 때문에 실시간으로 원단의 염색상태 확인이 어려웠다. 최근에는 염액을 실시간으로 모니터링하는 연구가 활발히 진행중이다. 본 논문에서는 탁도, pH, 전도도 센서를 이용하여 염액의 흡진율을 계측할 수 있는 복합센서 흡진율 모델 및 구성시스템을 제안하였으며, 실험방법소개와 실험결과 분석을 실시하였다.
Purpose - The rapid rise of e-commerce enterprises has led to the development of the logistics industry. At the same time, some enterprises are motivated by the interests to start reducing costs and inputs, which on the contrary leads to low quality of service, thus reducing customer satisfaction. In recent years, vicious competition, violent express delivery and lack of professionalism in the logistics market have led to high annual customer complaint rate, which has resulted in the company losing many loyal customers, but also unable to obtain new customers. Therefore, to pay attention to and understand the psychological needs of customers and improve the quality of logistics distribution service has become a pressing problem for Every express company. Design/methodology - By analyzing the problems existing in logistics distribution of express companies, this paper explores various factors affecting customer satisfaction and takes consumer sentiment as a mediating variable. Through questionnaires to collect relevant data, put forward hypotheses for empirical analysis, use two different software including SPSS 21.0 and AMOS 21.0 to analyze the information, draw conclusions and make recommendations. Findings - According to the above research results, the reliability, convenience, efficiency, professional can have a positive impact on customer satisfaction through the mediating effect of their sentiment, convenience and professional on consumer sentiment and satisfaction are more significant. Originality/value - This paper the establishment of distribution service indicators related to customer satisfaction and empirical analysis can not only enrich and supplement the distribution service quality indicator system studied by the former, but also provide a theoretical basis for future research.
Purpose - This study analyzed the correlation between economic liberalization and foreign direct investment. The purpose of this study is to seek ways to attract foreign direct investment from developing countries. Design/methodology/approach - This study analysed with observations of 19 from 2000 to 2018 using a fixed effect model, a random effect model, and a two-way fixed effect model. Findings - First, it was found that economic liberalization had a positive effect on attracting foreign direct investment in the early stages of economic liberalization. Second, it was found that economic liberalization in the deepening stage of economic liberalization had a negative effect on attracting foreign direct investment. In general, it was found that the higher the level of economic liberalization in developing countries is not accompanied by innovative changes in the industrial structure, the higher the level of economic liberalization is likely to decrease the inducement of foreign direct investment due to negative factors such as an increase in labor costs. Overall, this study approved that Economic liberalization have a non-linear (inverted U-shape) relationship with the inflow of foreign direct investment. Research implications or Originality - First, this study attempted to expand the variables for the determinants of FDI by analyzing economic factors which is a determinent of FDI. Second, economic liberalization generally has a positive effect on foreign direct investment, but it proved that it does not have only positive effects as a factor of attracting foreign direct investment in developing countries. The advantage of low wages in ASEAN countries acts as a factor for foreign direct investment, but as the degree of economic liberalization increases, the environment such as government size, guarantee of property rights, international trade freedom, fiscal soundness, and regulations change positively. On the other hand, it can be suggested that if the industrial level is less, it may lead to a loss of comparative advantage and a decrease in investment.
The cables in a cable-stayed bridge are critical load-carrying parts. The potential damage to cables should be identified early to prevent disasters. In this study, an efficient deep learning model is proposed for the damage identification of cables using both a multi-layer perceptron (MLP) and a graph neural network (GNN). Datasets are first generated using the practical advanced analysis program (PAAP), which is a robust program for modeling and analyzing bridge structures with low computational costs. The model based on the MLP and GNN can capture complex nonlinear correlations between the vibration characteristics in the input data and the cable system damage in the output data. Multiple hidden layers with an activation function are used in the MLP to expand the original input vector of the limited measurement data to obtain a complete output data vector that preserves sufficient information for constructing the graph in the GNN. Using the gated recurrent unit and set2set model, the GNN maps the formed graph feature to the output cable damage through several updating times and provides the damage results to both the classification and regression outputs. The model is fine-tuned with the original input data using Adam optimization for the final objective function. A case study of an actual cable-stayed bridge was considered to evaluate the model performance. The results demonstrate that the proposed model provides high accuracy (over 90%) in classification and satisfactory correlation coefficients (over 0.98) in regression and is a robust approach to obtain effective identification results with a limited quantity of input data.
Data anomalies seriously threaten the reliability of the bridge structural health monitoring system and may trigger system misjudgment. To overcome the above problem, an efficient and accurate data anomaly detection method is desiderated. Traditional anomaly detection methods extract various abnormal features as the key indicators to identify data anomalies. Then set thresholds artificially for various features to identify specific anomalies, which is the artificial experience method. However, limited by the poor generalization ability among sensors, this method often leads to high labor costs. Another approach to anomaly detection is a data-driven approach based on machine learning methods. Among these, the bidirectional long-short memory neural network (BiLSTM), as an effective classification method, excels at finding complex relationships in multivariate time series data. However, training unprocessed original signals often leads to low computation efficiency and poor convergence, for lacking appropriate feature selection. Therefore, this article combines the advantages of the two methods by proposing a deep learning method with manual experience statistical features fed into it. Experimental comparative studies illustrate that the BiLSTM model with appropriate feature input has an accuracy rate of over 87-94%. Meanwhile, this paper provides basic principles of data cleaning and discusses the typical features of various anomalies. Furthermore, the optimization strategies of the feature space selection based on artificial experience are also highlighted.
International Journal of Computer Science & Network Security
/
제22권9호
/
pp.353-357
/
2022
This article identifies the problems and substantiates the directions for the development of distance learning technologies in the training of personnel. An example of using digital media to create a remote access laboratory is given. The article is devoted to the definition of the main aspects of the organization of distance education. Rapid digitization, economic, political and social changes taking place in Ukraine necessitate the reform of the education system. First of all, it concerns meeting the educational needs of citizens throughout their lives, providing access to educational and professional training for all who have the necessary abilities and adequate training. The most effective solution to the above-mentioned problems is facilitated by distance learning. The article analyzes the essence and methods of distance learning organization, reveals the features of the use of electronic platforms for the organization of this form of education in different countries of the world. The positive characteristics of distance learning are identified, namely: extraterritoriality; savings on transport costs; the interest of modern youth in the use of information tools in everyday life; increase in the number of students; simplicity and accessibility of training; convenient consultation system; democratic relations between the student and the teacher; convenience for organizations in training their employees without interrupting their regular work; low level of payment for distance education compared to traditional education; individual learning pace; new teacher status. Among the negative features of online education, the author refers to the following problems: authentication of users during knowledge verification, calculation of the teacher's methodological load and copyright of educational materials; the high labor intensity of developing high-quality educational content and the high cost of distance learning equipment; the need to provide users with a personal computer and access to the Internet; the need to find and use effective motivation mechanisms for education seekers.
The green premium is the most important feature of Korea's RE100 system. Green premium has three characteristics. The first, the cost of implementation is lower than that of other means of implementation. The second, it is linked with the RPS system to keep the means of implementing the green premium low. Third, the funds raised by the green premium are used to supply renewable energy to compensate for the additionality that the green premium does not have. When the entire industrial sector's electricity consumption is converted to renewable energy, the implementation cost of the green premium is estimated to be 3,377.4 billion won, and the REC purchase is estimated to incur the implementation cost of 6,576.4 billion won, which is 3.5 trillion more than the green premium. It was analyzed that an additional implementation cost of KRW 100 million would occur. In addition, in the case of solar PPA, it was analyzed that additional implementation costs of KRW 13,375.7 billion to KRW 16,162.3 billion were incurred. It was estimated that the renewable energy that could be supplied to the green premium would at least be sufficient for companies exporting to the US and EU. In addition, it was analyzed that when the fund created as a green premium is used for renewable energy supply, about 30.7% of the renewable energy supply through PPA can be supplied. However, as ESG is emphasized, green premium can be criticized by green washing because there is no additionality. There is also a limit to responding to the EU's CBAM. Therefore, companies can use the green premium depending on the situation, but it is more advantageous to use PPA, etc. The government needs to sufficiently maintain the supply of renewable energy using the fund to maintain the green premium.
본 연구는 주택가격 상승 충격이 저출산에 미치는 영향과 각 변수들의 합계출산율 변동 기여도를 추정하였다. 본 연구는 기존 연구들이 시도하지 않았던 샤플리 분해와 패널 VAR의 예측오차분산분해를 통해 과거 출산율 하락 경험치에 대한 각 변수들의 기여도와 각 변수의 향후 기여도를 추정하여 차별성이 있다. 본 연구의 주요 분석결과는 다음과 같다. 우리나라 합계출산율의 하락은 최근 합계출산율 하락 흐름에 강한 영향을 받았으며, 이 영향력은 향후 미래에도 지속될 것으로 전망되었다. 주거비의 경우는 과거 주택 매매가격은 전세가격에 비해 상대적으로 합계출산율변동에 미친 기여도가 작았으나, 향후 미래에는 장기적으로 그 영향력이 커질 것으로 전망되었다. 주택 매매가격, 전세가격 이외 사교육비 역시 합계출산율 하락에 주요 원인으로 작동하였음을 실증하였고, 높은 사교육비 부담이 장기적으로도 합계출산율을 낮출 것으로 전망되었다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권12호
/
pp.4345-4363
/
2021
Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to provide customer prediction services, has been widely deployed on mobile cloud computing (MCC). Such services raise privacy concerns since customers need to send private data to untrusted service providers. In this paper, we devote ourselves to building an efficient protocol to classify users' images using the convolutional neural network (CNN) model trained and held by the server, while keeping both parties' data secure. Most previous solutions commonly employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) hardness or two-party secure computation protocols to achieve it. However, they have limitations on large communication overheads and costs in MCC. To address this issue, we present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic encryption scheme with packing and unpacking methods (LeHE). It supports fast homomorphic operations such as vector-matrix multiplication and addition. Then we propose a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers while exploiting the data shuffling technique to perform non-linear operations. Finally, we implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN framework in terms of response time, usage cost, and communication overhead compared to the state-of-the-art methods in the mobile cloud computing environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.