DOI QR코드

DOI QR Code

A review of 3D printing technology for piezoresistive strain/loadcell sensors

3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로

  • Cho, Jeong Hun (Department of Mechanical & Design Engineering, Pukyong National University) ;
  • Moon, Raymond Hyun Woo (Department of Mechanical & Design Engineering, Pukyong National University) ;
  • Kim, Sung Yong (Department of Mechanical & Design Engineering, Pukyong National University) ;
  • Choi, Baek Gyu (Department of Mechanical & Design Engineering, Pukyong National University) ;
  • Oh, Gwang Won (Department of Mechanical & Design Engineering, Pukyong National University) ;
  • Joung, Kwan Young (Innovative Smart Manufacturing R&D Department, KITECH) ;
  • Kang, In Pil (Department of Mechanical & Design Engineering, Pukyong National University)
  • 조정훈 (부경대학교 기계설계공학부) ;
  • 문현우 (부경대학교 기계설계공학부) ;
  • 김성용 (부경대학교 기계설계공학부) ;
  • 최백규 (부경대학교 기계설계공학부) ;
  • 오광원 (부경대학교 기계설계공학부) ;
  • 정관영 (한국생산기술연구원) ;
  • 강인필 (부경대학교 기계설계공학부)
  • Received : 2021.10.20
  • Accepted : 2021.11.23
  • Published : 2021.11.30

Abstract

The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Keywords

Acknowledgement

이 논문은 한국연구재단의 재원으로 학문후속세대양성사업(2020R1A6A3A1307), 이공학개인기초연구지원사업 (2018R1D1A1B07048103), 이공분야학문후속세대양성사업 (2019R1A6A3A12031466)의 지원을 받아 수행된 연구임.

References

  1. https://www.chosun.com/economy/tech_it/2021/10/14/QSUV6NPMOFASLOOR4ILWZ46FA4/(retrieved on Oct. 18, 2021)
  2. H. Liu, H. Zhang, W. Han, H. Lin, R. Li, J. Zhu, and W. Huang, "3D Printing Flexible Strain Sensors: From Printing to Devices and Signals", Adv. Mater., Vol. 33. 8, pp. 2004782(1)-2004782(19), 2021.
  3. T. Blachowicz and A. Ehrmann, "3D Printed MEMS Technology-Recent Developments and Applications", Micromachines, Vol. 11, No. 4, pp. 434(1)-434(14), 2020.
  4. A. Mora, P. Verma, and S. Kumar, "Electrical conductivity of CNT/polymer composites: 3D printing, measurements and modeling", Compos. B. Eng., Vol. 183. pp. 107600(1)-107600(28), 2020.
  5. S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson, and D. A. Hutchins, "A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors", PLoS One, Vol. 7, No. 11, pp. e49365(1)-e49365(6), 2012. https://doi.org/10.1371/journal.pone.0049365
  6. S. H. Oh, "3D printing of Ceramics: Introduction and the Feasibility in Dentistry", J. Korean Dent. Assoc., Vol. 58, No. 7, pp. 448-459, 2020. https://doi.org/10.22974/JKDA.2020.58.7.007
  7. H. Guo, R. Lv, and S. Bai, "Recent advances on 3D printing graphene-based composites", Nano Mater. Sci., Vol. 1, No. 2, pp. 101-115, 2019. https://doi.org/10.1016/j.nanoms.2019.03.003
  8. S. H. Ko and J. H, Kwon, "Printing for Micro/nano-fabrication", J. KSME, Vol. 59, No. 3, pp.22-43, 2019.
  9. G. Postiglione, G. Natale, G. Griffini, M. Levi, and S. Turri, "Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling", Compos. A, Vol. 76, pp. 110-114, 2015. https://doi.org/10.1016/j.compositesa.2015.05.014
  10. K. Gnanasekaran, T. Heijimans, S. V. Bennekom, H. Woldhuis, S. Winjnia, G.D. With, and H. Friedrich, "3D printing of CNT- and graphene-based conductive polymer nanocomposites by fused deposition modeling", Appl. Mater. Today, Vol. 9, pp. 21-28, 2017. https://doi.org/10.1016/j.apmt.2017.04.003
  11. I. P. Kang, M. J. Schulz, J. H. Kim, S. Shanov, and D. Shi, "A Carbon Nanotube Strain Sensor for Structural Health Monitoring", Smart Mater. Struct., Vol. 15, No. 3, pp. 737-748, 2006. https://doi.org/10.1088/0964-1726/15/3/009
  12. I. P. Kang, "A Study on Sensing Characteristics of Carbon Nanotube Smart Composite Nano Sensors Based on Electrical Impedance Measurement", J. Korean Soc. Power System Engineering, Vol. 13, No. 1, pp. 65-71, 2009.
  13. S. Y. Kim and I. P. Kang, "A Study on the Development of a Novel Pressure Sensor based on Nano Carbon Piezoresistive Composite by Using 3D Printing", Trans. Korean Soc. Mech. Eng. - A, Vol. 41, No. 3, pp. 187-192, 2017. https://doi.org/10.3795/KSME-A.2017.41.3.187
  14. K. Y. Joung, S. Y. Kim, I. P. Kang, and S. H. Cho, " 3D-Printed Load Cell Using Nanocarbon Composite Strain Sensor", Sens., Vol. 21, No. 11, 2021.
  15. J. F. Christ, N. Aliheidari, P. Potschke, and A. Ameli, "Bidirectional and Stretchable Piezoresistive Sensors Enabled by Multimaterial 3D Printing of Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites", Polym., Vol. 11, No. 1, pp. 11(1)-11(16), 2019. https://doi.org/10.3390/polym11010111
  16. W. Huang, K. Dai, Y. Zhai, H. Liu, P. Zhan, J. Gao, G. Zheng, C. Liu, and C. Shen, "Flexible and Lightweight Pressure Sensor Based on Carbon Nanotube/Thermoplastic Polyurethane-Aligned Conductive Foam with Superior Compressibility and Stability", ACS App. Mater. Interfaces, Vol. 9, No. 48, pp. 42266-42277, 2017. https://doi.org/10.1021/acsami.7b16975
  17. K. Li, H. Wei, and W. Liu, "3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing", Nanotechnol., Vol. 29 No. 18, pp. 185501(1)-185501(8), 2018. https://doi.org/10.1088/0957-4484/29/18/185501
  18. X. Wan, F. Zhang, Y. Liu, and J. Leng, "CNT-based electro-responsive shape memory functionalized 3D printed nanocomposites for liquid sensors", Carbon, Vol. 155, pp. 77-87, 2019. https://doi.org/10.1016/j.carbon.2019.08.047
  19. T. D. Ngo, A. Kashan, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Compos. B Eng., Vol. 143, pp. 172-196, 2018. https://doi.org/10.1016/j.compositesb.2018.02.012
  20. T. Xiao, C. Qian, and R. Yin, "3D Printing of Flexible Strain Sensor Array Based on UV-Curable Multiwalled Carbon Nanotube/Elastomer Composite", Adv. Mater. Technol., Vol. 6, No. 1, pp. 2000745(1)-200745(10), 2020.
  21. A. Cortes, X. F. Sanchez-Romate, and A. Jimenez-Suarez "Mechanical and Strain-Sensing Capabilities of Carbon Nanotube Reinforced Composites by Digital Light Processing 3D Printing Technology", Polym., Vol. 12, No. 4, pp. 975(1)-975(15), 2020. https://doi.org/10.3390/polym12040975
  22. G. Gonzalez, E. Fantino, and V. Bertana, "Development of 3D printable formulations containing CNT with enhanced electrical properties", Polym., Vol. 109, pp. 246-253, 2017. https://doi.org/10.1016/j.polymer.2016.12.051
  23. https://3dplife.tistory.com/100 (retrieved on Oct. 10, 2021)
  24. M. G. A. Mohamed, H. Kumer, and Z. Wang, "Rapid and Inexpensive Fabrication of Multi-Depth Microfluidic Device using High-Resolution LCD Stereolithographic 3D Printing", Manuf. Mater. Process., Vol. 3, No. 1, pp. 26(1)-26(11), 2019.
  25. I. P. Kang, K. Y. Joung, B. K. Choi, S. Y. Kim, G. W. Oh, B. T. Kim, and W. K. Baek, "A Study on Load Cell Development by means of Nano-Carbon Piezo-resistive Composite and 3D printing", J. Drive Control, Vol. 17, No. 4, pp. 97-102, 2020. https://doi.org/10.7839/KSFC.2020.17.4.097
  26. J. F. Christ, N. Aliheidari, A. Ameli, and P. Potschke, "3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermoplastic polyurethane nano composites", Mater. Des., Vol. 131, pp. 392-401, 2017.
  27. K. Y. Kim, J. H. Park, J. H. Suh, M .S. Kim, Y. R. Jeong, and I.K. Park, "3D printing of multiaxial force sensors using carbon nanotube (CNT)/thermoplastic polyurethane (TPU) filaments", Sens. Actuators A Phys., Vol. 263, pp. 493-500, 2017. https://doi.org/10.1016/j.sna.2017.07.020