
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, Dec. 2021                                  4345 
Copyright ⓒ 2021 KSII 

 
http://doi.org/10.3837/tiis.2021.12.005                                                                                                                ISSN : 1976-7277 

Privacy-preserving and Communication-
efficient Convolutional Neural Network 
Prediction Framework in Mobile Cloud 

Computing 
 

Yanan Bai1,2, Yong Feng1, and Wenyuan Wu1* 
1Chongqing Key Laboratory of Automated Reasoning and Cognition, Chongqing Institute of Green and 

Intelligent Technology, Chinese Academy Sciences 
Chongqing, 400714, China 

2 University of Chinese Academy of Sciences. 
Beijing, 100049, China 

[e-mail:baiyanan@cigit.ac.cn] 
*Corresponding author: Wenyuan Wu 

 
Received September 26, 2021; accepted November 24, 2021;  

published December 31, 2021 
 

 
Abstract 

 
Deep Learning as a Service (DLaaS), utilizing the cloud-based deep neural network models to 
provide customer prediction services, has been widely deployed on mobile cloud computing 
(MCC). Such services raise privacy concerns since customers need to send private data to 
untrusted service providers. In this paper, we devote ourselves to building an efficient protocol 
to classify users’ images using the convolutional neural network (CNN) model trained and 
held by the server, while keeping both parties’ data secure. Most previous solutions commonly 
employ homomorphic encryption schemes based on Ring Learning with Errors (RLWE) 
hardness or two-party secure computation protocols to achieve it. However, they have 
limitations on large communication overheads and costs in MCC. To address this issue, we 
present LeHE4SCNN, a scalable privacy-preserving and communication-efficient framework 
for CNN-based DLaaS. Firstly, we design a novel low-expansion rate homomorphic 
encryption scheme with packing and unpacking methods (LeHE). It supports fast 
homomorphic operations such as vector-matrix multiplication and addition. Then we propose 
a secure prediction framework for CNN. It employs the LeHE scheme to compute linear layers 
while exploiting the data shuffling technique to perform non-linear operations. Finally, we 
implement and evaluate LeHE4SCNN with various CNN models on a real-world dataset. 
Experimental results demonstrate the effectiveness and superiority of the LeHE4SCNN 
framework in terms of response time, usage cost, and communication overhead compared to 
the state-of-the-art methods in the mobile cloud computing environment. 
 
Keywords: Privacy Preservation, Convolutional Neural Networks, Homomorphic 
Encryption, Mobile Cloud Computing, Deep Learning. 



4346                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

1．Introduction 

Recent years have witnessed the tremendous success of deep learning (DL) in various 
domains, such as medical diagnosis [1], risk assessment [2], image recognition [3], due to its 
strong capability in solving many complex tasks while achieving superior performance. 
Meanwhile, with the exponential development of intelligent mobile devices, mobile cloud 
computing (MCC) emerged as a powerful computing paradigm that makes various complex 
tasks feasible on a single mobile device [4]. It has elastic scalability and broad accessibility 
characteristics and provides on-demand self-service and pay-as-you-go services [5]. In this 
context, cloud providers (e.g., Amazon, Google, Alibaba) are now providing deep learning as 
a service (DLaaS) that offers DL model training and prediction APIs for users, enabling them 
by paying specific fees to enjoy the intelligent and convenient benefits of life [6]. Take a 
healthy ecosystem in the MCC scenario, for example, with the help of the DLaaS-based 
healthcare service provided by Google 1  or Microsoft 2 , patients upload their photos of 
uncomfortable body parts to obtain more accurate medical diagnoses via the healthcare APIs 
installed on their mobile devices. It reduces the time wasted on traveling to the hospital and 
waiting in the hospital. However, a natural problem about privacy preservation in such services 
is raised that the inputs and the analysis results are disclosed to the service provider, breaching 
the privacy of sensitive user data. 

Although the DLaaS providers claim that they will never leak users’ data for commercial 
purposes, the increasing number of user data breaches alert us that there is no guarantee of 
what they promised [7]. A clear answer to protect users’ privacy is to give users the privilege 
to download models from the server and run them locally on their mobile devices. 
Nevertheless, this solution is unsatisfactory in the real world. First, these models are thought 
of as the intellectual property of the model-holders and must be confidential. Second, 
publishing models may reveal information about the underlying training dataset, which 
includes a massive amount of private data, e.g., a disease prediction model is trained by many 
individual medical records. Third, mobile devices are usually configured with limited 
processing resources, storage, and electric quantity, which may not normally support the DL 
model’s running locally. Therefore, our work aims to design a privacy-preserving DLaaS 
framework in the MCC environment, where both service providers and mobile device users 
can provide their private data safely. 

Several protocols or frameworks have been proposed based on various secure computing 
technologies, such as secret sharing (SS), homomorphic encryption (HE), Yao’s Garbled 
Circuit (GC), Goldreich-Micali-Wigderson (GMW), etc., to tackle this problem. These 
methods offer a promising way to reduce the computational complexity significantly when 
developing the privacy-preserving CNN prediction model. They may lead to an enormous 
communication overhead since they heavily focus on employing the RLWE based HE schemes 
to perform the secure linear layers, and using two-party computation protocols to execute non-
linear layers, which need immense rounds of interactions between user and service provider. 

In the MCC environment, response time and usage cost are two important indexes to 
evaluate users’ satisfaction with DLaaS services. They are mainly determined by both parties’ 
computation latency and communication overhead, also limited to the unstable mobile data 

 
 
 
1 https://en.wikipedia.org/wiki/Google\_Health 
2 https://health.d365industrypartners.com 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4347 

transfer speed, which is decided by the status of network load and user’s location. 
Unfortunately, the enormous communication overheads of the existing methods consume 
more bandwidth, leading to an additional and inevitable usage cost for mobile users [8], and 
extended response time degrade the service’s user experience. They constitute barriers 
between mobile device users and cloud service providers. 

This paper introduces LeHE4SCNN, a practical realization of privacy-preserving and 
communication-efficient CNN prediction framework. Typically, CNN is one of the most 
popular neural network architectures in DL. Convolutional and fully connected layers have 
linear properties, so we call them linear layers, while activation and pooling are non-linear 
layers. Our contributions are as follows: 
• We propose a low-expansion rate homomorphic encryption scheme with novel packing 

and unpacking methods, based on the module learning with errors (MLWE) assumption. 
It allows homomorphic addition, inner product between two vectors, vector-matrix, and 
matrix-matrix multiplication operations. We derive the bound of accumulated noise and 
present several significant theoretical analyses and proofs, including correctness, security, 
and ciphertext expansion rate. 

• We present LeHE4SCNN, a piracy-preserving and communication-efficient CNN 
prediction framework in the MCC environment, to ensure computation security and low 
communication overheads between mobile users and cloud service providers. It adopts 
the proposed LeHE scheme to secure the linear layers and exploits the data shuffling 
technique to secure the non-linear layers. 

• We implement LeHE4SCNN with varied CNN models and test its performance on the 
industrial dataset. Most importantly, we evaluate the response time and usage cost of 
LeHE4SCNN with other competitors in the MCC environment. Experimental results 
show the superiority and effectiveness of LeHE4SCNN in the MCC environment. 

The rest of this paper is organized as follows. Section 2 gives the related work and 
preliminaries. We describe the LeHE scheme with novel packing and unpacking methods in 
Section 3. Moreover, we discuss the overview and the design details of LeHE4SCNN in 
Section 4. Section 5 shows the experimental results and discussion. Finally, Section 6 
concludes this paper. 

2. Related Work  

2.1 Related Work 
Homomorphic Encryption Based: Homomorphic encryption (HE) is a form of encryption 
that can directly evaluate functions over encrypted texts without disclosing any data 
information. It includes multiple types of encryption schemes that perform different classes of 
computation over encrypted data. Some common types of homomorphic encryption are 
partially homomorphic encryption (PHE), somewhat homomorphic (SHE), leveled fully 
homomorphic (LHE), and fully homomorphic encryption (FHE). FHE allows arbitrarily 
unlimited operations on the encrypted data but has an expensive computation cost [9]. 
Compared with FHE, PHE enjoys a lower computation overhead but only supports the 
evaluation of circuits consisting of only one type of gate, e.g., addition or multiplication. SHE 
schemes can evaluate two types of gates, but only for a subset of circuits, while LHE supports 
depth-bound arithmetic circuits [10, 11]. 

Leverages by LHE, Gilad et al. proposed CryptoNets [12] to evaluate a trained neural 
network in the ciphertext domain. As the main bottleneck of LHE is the computational cost, 



4348                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

which grows dramatically with the number of levels of multiplication, CryptoNets’ 
computation overheads are inevitably large. For performing the non-linear functions, it used 
low-degree polynomials to approximate the activation function, so the network structure must 
be retrained, hence it hurts the accuracy. Similar studies see E2DM [13], CryptoDL [14], 
Faster CryptoNets [15], etc. 

Two-Party Computation Based: Two-party secure computation protocols e.g., Yao’s 
garbled circuits (GC) and Goldreich-Micali-Wigderson(GMW), focus on dealing with two 
participants computing a function on personal input. These techniques have the advantage of 
being computationally efficient since these protocols rely on symmetric-key encryption 
schemes such as AES, and hardware support in the form of the Intel AES-NI instruction set. 
To overcome the limitations of HE-based methods, Rouhani et al. presented DeepSecure [16], 
which leveraged GC to perform secure privacy-preserving prediction. Nevertheless, 
DeepSecure required heavy communication overheads when executing multiplication 
operations. XONN [17] binarized the computations in neural networks and employed GC to 
get prediction results obliviously without leaking sensitive user data. 

Mixed-protocol Based: Several studies proposed mixed-protocol-based solutions to trade 
off the advantages of different solutions. MiniONN [18] converted a neural network model 
into an oblivious form and evaluated it with secure two-party computation. Chameleon [19] 
used the GMW protocol for low-depth non-linear activation functions and GC for more 
complicated non-linear functions. For arithmetic operations such as addition and 
multiplication, it utilized SS-based methods to perform them. MiniONN and Chameleon 
required offline and online computation phases. They created correlated randomness or dot-
product triplets in the offline phase to guarantee a fast online prediction phase. Besides, 
Chameleon needed a third party. GAZELLE [20] used an intricate combination of HE and GC 
to carry out the inference phase of the DL model, which applied the GC to perform the non-
linear activation function and used lattice-based HE to execute linear operations. As a result, 
GAZELLE improved the runtime of private inference and reduced communication between 
the user and the cloud. FALCON [21] applied Fourier Transform to the multiplication 
operation of linear layers of a CNN model to make HE efficient and introduced a privacy-
preserving protocol for the Softmax function. DELPHI [22] shifted expensive HE 
multiplication operation into offline phase to reduce online response time, and through 
navigating the performance accuracy trade-offs, developed a planner that automatically 
generated neural network architecture configurations. 

2.2 Notations 
Let f(X)=Xn+1, n = 2n’−1 such that Xn +1 is the 2n’-th cyclotomic polynomial. We denote the 
rings [ ]X¢ /f(X) by R and [ ]q X¢ /f(X) by Rq, respectively. For a polynomial u(x)∈Rq, we use 

u for u(x), the infinite norm of the polynomial denotes by ||u||∞= max|uj|, uj is the jth coefficient 
of u. Infinite norm of a polynomial vector p = (p1, p2, … , pn)∈Rn consisting of  n polynomials 
is ||p||∞ = max(||pi ||∞). This study denotes the infinite norm by || · ||. 

Vector is in the form of a column vector unless otherwise specified. For two vectors a and 
b, the inner product of two vectors can be defined as <a, b>=aTb, where â j is the jth 
component of a. Note that regular lower-case letters represent polynomials, bold lower-case 
letters represent vectors, while we denote matrices by bold upper-case letters, and use â ij to 
represent the (i, j) element of a matrix. Furthermore, Pr[·] represents the probability, negl 
means the negligible probability.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4349 

λ  is the security parameter, denotes the scheme can resist 2λ  attacks. ( )k k λ=  is the rank 
of a module determined by λ . q  is a modulus parameter that determines the size of the finite 
field. η  is noise distribution parameter. dt, dp, du and dv are public key compression, plaintext 
compression and ciphertext compression parameters respectively. After mod q operation, the 
coefficients of the polynomial are in the range ( ( -1) / 2,( 1) / 2]q q− − . For x∈¤ , ( )round x  
is rounding x  to the closest integer, ⌈x⌉ and ⌊x⌋ express rounding up and rounding down of x 
to the nearest integer. a←S denotes that a is chosen uniformly at random from a set S or a is 
chosen according to a probability distribution S. More preliminaries are present in the 
supplementary file. 

3. LeHE Scheme with Packing and Unpacking Methods 

3.1 Packing and Unpacking Methods 
Single Instruction Multiple Data (SIMD) [24] is widely used in homomorphic encryption 
schemes such as Brakerski-Gentry-Vaikuntanathan (BGV) [10], Cheon-Kim-Kim-
Song(CKKS) [25]. They adopt the Chinese Remainder Theorem (CRT) to number fields and 
partition the plaintext space into a vector of plaintext slots. As a result, a single homomorphic 
addition or multiplication of a pair of ciphertexts implicitly adds or multiplies (component-
wise) an entire plaintext vector. 

As we know, the CNN prediction task requires a lot of inner product operations. However, 
using the CRT-based SIMD schemes to execute this operation is time-consuming since 
rotating operations are required to sum up the results between slots. Different from the CTR-
based SIMD, we construct the inner product terms by a delicate placement of coefficients. It 
packs several low-dimensional vectors into a high-degree polynomial and rearranges the 
coefficients of one polynomial. Therefore, these inner products arise in some coefficient terms 
of polynomial convolution. 

 
Fig. 1. An example of packing and unpacking methods 

 
 
 

â0 â1 â2

b̂2

b̂5

b̂4

b̂3

b̂8

b̂7

b̂6

â0â1â2

b̂2

b̂1

b̂0

b̂5

b̂4

b̂3

b̂8

b̂7

b̂6

Given 
a=(â0,â1,â2), 

b1=(b̂0,b̂1,b̂2), 
b2=(b̂3,b̂4,b̂5), 
b3=(b̂6,b̂7,b̂8),

 solve <a, b1>,<a, b2> 
and <a, b3>

L1

L2

L3

L1

L2

L3

L1:â0b̂0+â1b̂1+â2b̂2

L2:â0b̂3+â1b̂4+â2b̂5

L3:â0b̂6+â1b̂7+â2b̂8

L1:the coefficients of term x2

L2:the coefficients of term x5

L3:the coefficients of term x8

coefficients of polynomial a coefficients of polynomial a

coefficients of polynom
ial b

coefficients of polynom
ial b

terms of ab

(a) (b)

 

b̂0

b̂1



4350                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

Fig. 1 indicates a straightforward example. The coordinates depict the filling method of the 
polynomial coefficients from lower to higher degree terms. The cross point represents the 
convolutional result terms of two polynomials, and the oblique line represents similar terms 
needed to merge. Note that Fig. 1(a) and (b) are essentially the same, just two different ways 
of filling coefficients. Therefore, the coefficients of x2, x5 and x8 are the required inner products. 
In the convolutional layers of the CNN prediction task, the size of the kernel (i.e., the vector 
dimension of solving the inner product) is usually much smaller than the degree of plaintext 
polynomial. It can load more vectors to solve more inner products. Therefore, the packing and 
unpacking methods are suitable for convolutional operations on CNN. 

Packing matrix: The packing and unpacking methods can be used for solving 
homomorphic vector-matrix in parallel. Algorithm. S1 (found in the supplementary file) 
presents the packed encoding method of a matrix. For an input ˆ{ | [0, ), [0, )}ijb i r j s= ∈ ∈M , 
elements in each column are arranged in reverse order. Then, along the direction of the 
columns of the new matrix, the element values of /n r    columns are assembled into a packed 

plaintext polynomial, thus /sr n    polynomials can be obtained. Assume that a polynomial 

is represented as
1 '
0

ˆn i
z ii

m b x
−

=
=∑ , [0, / )z sr n∈     by the above two steps, a packed polynomial 

can be expressed as: 
/ 11 2 1 3 1

2 / 11 3 1 5 1

0 2 ( / 1)

ˆ ˆ ˆ ˆ , [0, / )
n r rr r r

n r r r ir i r i r i
z i i i i q

i i r i r i n r r

m b x b x b x b x R z sr n
− − − −  

− − − − − − − − −  

= = = = −  

′ ′ ′ ′= + + +…+ ∈ ∈   ∑ ∑ ∑ ∑  

Result Unpacking: After finishing the homomorphic multiplication between vector w  
and input matrix M , we need to unpack the resulting polynomial zres , [0, / )z sr n∈     to 
get several inner products. Because： 

1 1

0 0

ˆ ˆˆ ˆ( , ,  1) ,      (  ,2 1)
r r

z i i z i i r
i i

GetCoeff res r w b GetCoeff res r w b
− −

+
= =

′ ′− = − =∑ ∑  

1 1

2 ( / 1)
0 0

ˆ ˆˆ ˆ( ,3 1) , , , ( , / 1)
r r

z i i r z i i n r r
i i

GetCoeff res r w b GetCoeff res n r r w b
− −

+ + −  
= =

′ ′− = − =  ∑ ∑L L  

Where ( , )zGetCoeff res i , 0 i n≤ <  represents the coefficient of the term ix  in polynomial

zres , the /n r   coefficients of zres  are /n r   inner products between w and zm . Algorithm. 

S2 in the supplementary file illustrates the corresponding steps. Consequently, /sr n    
packed polynomials are multiplied by w to yield s  inner products. Therefore, we acquire 
multiple inner products in parallel from the packing and unpacking methods. 

Furthermore, a pair of multiplication matrices can also employ packing and unpacking to 
solve matrix-matrix multiplication. For the matrix W ’s row vectors and the matrix M ’s 
column vectors, these vectors are placed at appropriate positions of polynomials w and m, and 
one of the polynomials is placed in reverse order to construct the inner product terms in product 
polynomial. 

3.2 Homomorphic Operations  
In the task of privacy-preserving CNN prediction, the cloud holds model parameters and 
conducts inner product computations between the user’s encrypted data and model parameters. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4351 

Hence, the proposed HE scheme should support the homomorphic inner product between 
plaintext and ciphertext vector, together with homomorphic addition. Whereas, the encryption 
scheme [23] did not provide any homomorphic inner product operation. Under these 
conditions, we modify the LeHE encryption scheme to support homomorphic addition, vector-
vector multiplication, vector-matrix multiplication, where the vector is plaintext, and the 
second operand is ciphertext. The algorithms of addition and vector-vector multiplication are 
detailed as follows. 
• LeHE.Add(c1, c2):Input c1= LeHE.Enc(pk, m1) = (u1, v1) 2

q qR R∈ × , and c2= LeHE.Enc(pk, 

m2) = (u2, v2) k
q qR R∈ × , then compute u1 ' = Decompressq(u1, du), v1 ' = Decompressq(v, 

dv), the same operations to u2 and v2, output c1+ c2 = ( u1 '  + u2 ' , v1 ' + v2 ' ). 
• LeHE.ConMul(w, c): Input plaintext polynomial qw R∈ , and ciphertext c = LeHE.Enc(pk, 

m) = (u, v). Compute u ' = Decompressq (u, du), and compute c '  = w ⋅ c =
2

1( , ) k
qw wv R +′ ∈u , 

then output c ' . 
Based on the packed and unpacking methods introduced in section 3.1, together with the 

extended homomorphic algorithms, the homomorphic vector-matrix product of LeHE using 
packing and unpacking scheme is designed to resolve secure linear operation in CNN. 
Algorithm. S3 in the supplementary file presents the specific steps. 

After the input vector w is assembled as a polynomial, the input matrix M calls 
LeHE.PackingEncode to pack into polynomials. Then the scheme executes LeHE.Enc to 
encrypt these polynomials. Next, it repeatedly calls LeHE.ConMul to finish the vector-matrix 
multiplication. Finally, it conducts the LeHE.Dec and LeHE.UnpackingDecode algorithms to 
acquire the desired inner products. This scheme contains implementations of the inner product 
of two vectors and the vector-matrix multiplication using packing and unpacking. Besides, the 
homomorphic matrix-matrix multiplication scheme is similar, except for the packed encoding 
method of two matrices. 

3.3 Noise Analysis and Correctness 
In this part, we derive the conditions of noise growth expression and decryption correctness 
after the ConMul(w, c) operation. 

From the Thm 1 in Appendix part of the supplementary file, the ciphertext noise ε  := eTr 
+ e2 + cv + ct

Tr -sTe1 + sTcu, where (s,e,e1,e2,r) ← ( )k k k k
η η η η ηβ β β β β× × × × , ct, cu, cv are the 

noise are the noises generated by compression and decompression, and ε  satisfies (1). 
2

1 1
2Pr( 12 ( ) ) .

6 2 2du dv
nk q q neglηε η+ +

⋅ ⋅
> ⋅ ⋅ + + =   (1) 

To make the inner product result correct after modulo operation, the plaintexts w and m need 
to meet (2). 

2|| || || ||
2

dp

w m n⋅ ⋅ <      (2)

2. ( , ) (( ) ) 2

2  (  )  2  

dp
T dp

dp
dp

m LeHE Dec sk round v u mod
q

round m mod
q

ε

′ = = − ⋅

= + ⋅

c s
  (3)



4352                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

2( ) 2
dp

dph w m round w m w mod
q

ε′= ⋅ = ⋅ + ⋅ ⋅    (4) 

Therefore, from (4), the noise term after LeHE.ConMul(w, c) is: 
2:

dp

sum w
q

ε ε= ⋅ ⋅      (5) 

To eliminate sumε  by rounding operation, || ||sumε  should satisfy: 
(|| || 1 / 2)sumPr neglε > =     (6) 

From (1) and (5), we get: 
2

1 1
2 2Pr( (12 ( ) )

6 2 2

dp

sum du dv
nk q q w negl

q
ηε η+ +

⋅ ⋅
> ⋅ ⋅ + + ⋅ ⋅ =‖ ‖   (7) 

Hence, when the parameter settings satisfy (2), (6), and (7) simultaneously, the ciphertext 
decryption can be correct. 

3.4 Security 
The security of the encryption scheme defined above can be guaranteed by Lemma 1. 

Lemma 1: The LeHE scheme is IND-CPA secure under the MLWE assumption. 
Proof: We use a game-based proof method. The notation ( )GameAdv A represents the advantage 
of an adversary A  in a game. 
• Game 0: The adversary A  is executed in the IND-CPA security experiment referred to 

as Game 0. The advantage of the adversary is | [Pr b b′= in Game 1 ] [Pr b b′− =  in Game 
0 ] | ( )MLWEAdv„ B . 

• Game 1: In Game 1, the value :′ = +t As e , used in KeyGen algorithm, is substituted by a 
uniformly random value k

qR′←t . It is possible to verify that there exists an adversary B  
with the same running time as that of A  such that | [Pr b b′= in Game 1 ] [Pr b b′− =  in 

Game 0 ] | ( )MLWEAdv„ B . 

• Game 2: In Game 2, the values 1: T e= +u A r , and 2: Tv e= +t r  used in the generation of 
the challenge ciphertext are simultaneously substituted with uniformly random values
( , ) k

q qv R R′ ′ ← ×u . Again, it is possible to verify that there exists an adversary B  with the 
same running time as that of A  such that | [Pr b b′= in Game 2 ] [Pr b b′− = in Game 1
] | ( )MLWEAdv„ B . 

• Game 3: In Game 3, we use the challenge ciphertext generation method in Game 2, 
sample qw R←  uniformly, and compute ( , )w w v′ ′⋅ ⋅u . So it is possible to verify that there 

exists an adversary B  with the same running time as that of A  such that | [Pr b b′= in 
Game 3 ] [Pr b b′− = in Game 2 ] | ( )MLWEAdv„ B . 

• Game 4: In Game 4, we use the challenge ciphertext generation method in Game 3 to 
generate two challenge ciphertexts 1 1 1 1( , )w w v′ ′⋅ ⋅u  and 2 2 2 2( , )w w v′ ′⋅ ⋅u . Then compute 

1 1 1 1( , )w w v′ ′⋅ ⋅u  + 2 2 2 2( , )w w v′ ′⋅ ⋅u . Therefore, there exists an adversary B  with the same 
running time as that of A  such that | [Pr b b′= in Game 4 ] [Pr b b′− = in Game 3



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4353 

] | ( )MLWEAdv„ B . Since the values of the two challenge ciphertexts are independent of b, 
i.e., [Pr b b′= in Game 4 ] 1 / 2= . In sum ， ( ) 4 ( )cpa MLWEAdv Adv⋅„A B .                                                                                                         
□ 

4. LeHE4SCNN 

4.1 Overview 
Consider such an intelligent healthcare scenario in MCC that: in COVID-19 outbreak period, 
a user may want to know his health condition via uploading a photo of tongue surface to the 
healthcare API in a smart device, then the result of lung inflammation with the corresponding 
probability can be received from the cloud server. For example, the output label “Lung 
Inflammation” with probability 0.3 and 0.7 have different meanings for treatment. In this 
section, we outline the execution flow of LeHE4SCNN. The basic idea of LeHE4SCNN is to 
perform the secure neural network evaluation between smart device D and untrusted cloud 
server S by the proposed homomorphic encryption and data shuffling technologies jointly. 

Hypothesis: Both D and S are semi-honest [26], presumed to follow the LeHE4SCNN 
protocol, and never deviate from it, although they might attempt to infer more information 
based on the data they receive and transmit. Specifically, the device leaks no information about 
the input contents, intermediate calculation result, and classified results to the cloud. The input 
data is factual, never using fake data. For the cloud server, LeHE4SCNN protects the 
parameters of the whole CNN model, and it does not hide the model architecture. 

There are two parts to the framework: the preprocessing phase and the computation phase. 
In the preprocessing phase, the cloud randomly generates permutation matrices depending on 
the architecture of the CNN, except for the first layer. Then it multiplies the corresponding 
permutation matrices by weight vectors to yield the permuted model W. In the computation 
phase, the user (i.e., smart device) and the cloud server work together to complete the 
following tasks of linear and non-linear operations: 
• Evaluate linear layers (i.e., Conv and FC layer): For linear layers, S utilizes the LeHE 

with packing and unpacking scheme to execute matrix-matrix multiplication in 
convolutional layers and vector-matrix multiplication fully connected layers. Take Conv 
layer, for instance, D feeds the convolutional layer with an encrypted input matrix C=Enc 
(pk, M), S computes RS=W⋅C. In detail, pk is the public key of D, M is the packed 
polynomial matrix of the original input matrix, and W is the filters matrices. The fully 
connected layer is similar except for homomorphic vector-matrix multiplication. 

• Evaluate non-linear functions (i.e., activation and pooling layer): S and D perform 
designed secure computation protocols to keep data secure. Concretely, S first computes 
shuffled result RS'=RS × P, where P is a permutation matrix. Next, it sends RS' to the 
intelligent device D to decrypt, and then it carries out ReLU and pooling operations. We 
use the shuffling algorithm stated in section 2.3.2 to keep data confidential. 

In the following layer, D repeatedly executes the step of evaluating linear layers, as the 
filter matrix in the current layer is permuted in the preprocessing phase, and the input is 
rearranged in the same way, so S will get the same convolutional or fully connected results as 
without using shuffled technology. 

After implementing the above two steps repeatedly until the last hidden layers, to protect 
the model data in the current layer, S adds encryption of a random number dpr∈¢  to the linear 
computation results and sends it to the D. As the non-linear operation of the last hidden layer 



4354                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

usually is Softmax function, and because  

_ _

1 1

i i

j j

z r z

i num out num out
z r z

j j

e ey
e e

+

+

= =

= =

∑ ∑
     (8) 

where iz  is the ith [1, _ ]i num out∈  input elements of the output layer. D decrypts the 
ciphertext and gets the prediction result directly. 

4.2 Design Details 

4.2.1 Preprocessing Phase 
The cloud server S is required to perform three tasks in the preprocessing phase. 1) Preprocess 
the model parameters. Covert the float numbers of model data into integer matrices based on 
the plaintext range, then change the integer matrices into polynomial matrices according to 
packed encode methods. 2) Generate shuffling matrices. In the convolutional layer, S generates 
two types of shuffling matrices, one for shuffling channels and the other for shuffling the 
elements in the columns of the extended input matrix. For a fully connected layer, S generates 
a shuffling matrix. 3) The rearranged model is also produced by multiplying by these matrices. 

4.2.2 Secure Linear Layers 
The smart device performs an input validity check before being served. Some trivial inputs 
(such as all zeroes or standard basis vectors) are forbidden, and the following operations are 
completed on the input that passes the check. 

An input image to a convolutional layer represents a tuple ( ic h w× × ), where ci is the 
number of input channels, h and w are the height and width of the image. The smart device D 
carries out the following three steps: 
1) According to the size of the filter, input is zero-padded depending on the VALID mode 

or SAME mode. For example, in the SAME mode, for each input channel, D expands 
input into an extended matrix M with the size of ( 1)i h wc f f hw+ ×  via stepping a kernel 
matrix h wf f×  across the input image and connects the row vector [1, 1,…, 1]hw into the 
first row. 

2) For the extended matrix M, D chooses the appropriate elements of M for packing to get 
M(1) ' : it performs steps 1 to 4 of Algorithm. S1 first, and then transforms M into a matrix 
with ( 1)i h wh c f f w+ × . It packs the elements in a pooling window into a polynomial so 
that the shuffled technique does not separate them. D can compute up to

/ ( 1)i h wz n c f f= ⋅ ⋅ +    inner products at a time, so at most packs 
/ ( _ _ )z pool h pool w⋅    elements of pooling window at once, where _pool h  and 

_pool w  are the height and width of the pooling window in the following pooling 
operation. 

3) D encrypts M(1) '  to get Enc(pk, M(1) ' ) and passes it to S. 
The cloud S holds co filters with the size of i h wc f f× × . In the preprocessing phase, it first 

switches the filter into a matrix W with size of o i h wc c f f× , and concatenates bias vectors to 
the first column of W. Next, it integrates each matrix row as a polynomial. Thus, 

(1) { , [0, )}i ow i c= ∈W  is a polynomial matrix. In the online phase, it involves the steps below 
to accomplish the linear layers:  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4355 

1) S calls LeHE.ConMul(W(1), Enc(pk, M(1) ' ) to output (1)RS =W(1) Enc(pk, M(1) ' ), where 
each matrix element involves (k+1) polynomials. 

2) S rearranges RS(1) using the ciphertext shuffling technique. Suppose the next linear layer 
is a convolutional layer, S multiplies every column vector in the extended matrix by 
permuted matrices. Then it messes up the arrangement of the channels via multiplying 
RS(1) by another permutation matrix. Finally, it sends RS(1) '  to D. If the next linear layer 
is a fully connected layer, S performs the FLATTEN operation on RS(1) to create a vector, 
then it multiplies the components by the prepared permutation matrix to obtain RS(1) ' , 
and transmits RS(1) '  to D. By these operations, the inner products between the out-of-
order input and the corresponding rearranged model remain unchanged, as if it is not using 
the shuffling method in the next hidden layer. 

4.2.3 Secure Non-linear Layers 
The end device D conducts the computation of non-linear functions. Once D finishes the 
decryption by calling LeHE.Dec(RS', sk) and unpacks the results by Algorithm. S2, it executes 
activation functions such as ReLU or sigmoid function on each inner product. Then it performs 
the pooling function. Afterward, D outputs the out-of-order result and feeds into the next linear 
layer. 

When D and S complete all hidden layers’ operations, S firstly generates a random integer 
number dpr∈¢ , assuming that the linear result of the last hidden is RS(l). After calling 
LeHE.Enc(pk, r), it then performs LeHE.Add(Enc(pk, r), RS(l)). Finally, the result is sent to D. 
D decrypts it, then it runs the Softmax function to output the prediction result. 

4.3 Security Analysis of LeHE4SCNN 
For the intelligent mobile device side, the security is guaranteed by the LeHE scheme when it 
encrypts the input image. For the cloud side, the hardness of obtaining the plaintexts of input 
and calculated results (including the intermediate and final results) is equal to solving the 
MLWE hard problem. The cloud protects its model by shuffling technique, and the analysis is 
following: 
• Take the CNN architecture in Table 1, for instance. Since in the pooling window, 

h wpool pool⋅  elements are rearranged at random and need not be restored. The 
probability that the end device can guess the correct arrangement to solve the correct 
model is 1571 / (4! 6! 37!) 1 / 2⋅ ⋅ ≈  in the Conv-1 layer, which can resist 2157 attacks. In 
Conv-2, the number of input channels and the output ciphertext is all 16, so it is

931 / (4! 16! 16!) 1 / 2⋅ ⋅ ≈ . And 6601 / (120!) 1 / 2≈  in FC-1, 4201 / (84!) 1 / 2≈  in FC-2. 
Therefore, the end device cannot solve the correct rearrangement of the inner products, 
namely cannot acquire model parameters. As S adds the mask r to the multiplication 
results in the output layer, the plaintext result's distribution is not distinguished from the 
uniform distribution. 

• The smart device is forbidden for some special input such as standard basis or its integer 
multiples, designed to defend against the model inversion attack. However, in the 
intelligent healthcare scenario, the inputs of a device are rarely all zeroes or standard basis. 
Hence, the limitations do not affect the availability of service. 
 
 

Table 1. Layers description of CNN 



4356                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

layers Description 

[Conv-1] Input image: 28×28, kernel size: 5×5, stride (1, 1), number of output channels 6, 
padding = same, Activation = ReLU 

[maxpooling-1] Input size: 6 28 28× × , window size: 1×2×2, output size: 6 14 14× ×  

[Conv-2] Input size: 6×14 ×14, kernel size 6×6, stride (2, 2), number of output channels 16, 
and output size:16×7×7, padding=same, Activation = ReLU. 

[maxpooling-2] Input size: 16×7×7, window size: 1×2×2, output size: 16×4×4. 
[FC-1] Fully connecting with 16×4×4 = 256 inputs and 120 outputs, Activation = ReLU. 
[FC-2] Fully connecting with 20 inputs and 84 outputs, Activation = ReLU. 
[FC-3] Fully connecting with 84 inputs and 10 outputs, Activation = Softmax. 

 

5. Experimental Results and Discussion 
In this section, we evaluate the implementation of LeHE4SCNN on the industrial dataset. Then, 
compared with the state-of-the-art methods, we test the response time and usage cost of 
LeHE4SCNN with different CNN models in the MCC environment. The performance of 
LeHE with the packing and unpacking scheme is report in supplementary file. 

5.1 Experimental Settings 
Testbed: We conduct our implementations on a cloud server and a laptop hosted by our lab. 
The cloud server is equipped with one Intel Xeon(R) E5-2680 2.4 GHz processor with 24 GB 
RAM, while the laptop is configured with an Intel i5-7500 CPU with 8GB RAM. Their 
operating system is Ubuntu 16.04.2LTS and enables support for the AES-NI instruction set. 
We implement LeHE and LeHE4SCNN in C++. In our experiments, the cloud server works 
as DLaaS services provider, while the laptop works as a mobile device user. We perform all 
the experiments in sequence without adopting any parallel hardware. Moreover, we repeat 
each experiment 50 times, the mean value is reported as the final result to attain a fair result.  

Dataset: LeHE4SCNN framework is evaluated on CNN to classify encrypted handwritten 
images of the MNIST dataset (Modified National Institute of Standards and Technology 
database). It is a dataset of images representing digits handwritten by more than 500 different 
writers. It contains 60000 training images and 10000 testing images. The format of the images 
is 28×28, and the integer value of each pixel represents a level of grey with a range of 0 to 
255. Moreover, each image is labeled with the digit it depicts. 

Parameter selection: We set n = n (λ) = 1024, η = 5 and k = 2.  In the LeHE scheme, 
supposed that ||w||, ||m|| ≤ 29, ||<w, m>|| ≤ 229/2, hence dp = 29. From the correct analysis of 
section 3.3, we set du = dt = dv = 49, q≈252 (the next prime of 252). With the selected 
parameters, LeHE scheme can achieve a 102-bit security level. We implement LeHE4SCNN 
on a CNN with eight layers, the details of each layer are present in Table 1. Since the LeHE 
scheme only supports the operations on integer space, the model parameters (i.e., W and b) 
are enlarged by 50 times and are rounded to the nearest integer. As a result, w‖ ‖, 62b <‖‖ , 
and 82m <‖ ‖ . Thus, 25dp = , 47140737488355333 2q = ≈  and 44du dv= = , 
q2=9223372036854775837≈ 263, and the selected parameters of the scheme can achieve a 128-
bit security level. 

 

5.2 Performance of LeHE4SCNN on Real Network 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4357 

In this part, we test the performance of LeHE4SCNN on the real network in terms of 
computation and communication overhead, respectively. 

Computation overheads: Table 2 shows the time overheads of each layer in LeHE4SCNN.  
The dominant cost of evaluating the framework is that of performing the convolution layer. 
Take the Conv-1 layer for example, the mobile device first takes about 1.98s to encode and 
encrypt the target image using the encryption scheme. Then the cloud spends 1.003s to execute 
the homomorphic multiplication (including shuffling operation) for the convolution layer. 
After that, the convolution result is sent to the device again. It requires 1.414s to decrypt and 
decode the result. Then it only costs almost 0.112ms and 0.038ms for ReLU and Maxpool. 
Hence, the total computation overhead of executing the Conv-1 layer, including the non-linear 
layers between the mobile device and the cloud, is 4.4s. For Conv-2 and non-linear layer 2, 
the computation overhead is about 3.33s. The following layers cost 0.58s, 0.17s, and 0.037s 
to finish the corresponding fully connected and non-linear operations. 

 
Table 2. The computation overheads of the CNN on each image of dataset MNIST (ms) 

Layers User Cloud 
Pac.Encode+Enc Dec+Unpac.decode Comput. Eval. 

Conv-1 1983.16 1414.68 – 1003.44 
Relu-1 – – 0.112 – 

Maxpool-1 – – 0.038 – 
Conv-2 335.95 1900.46 – 1095.74 
Relu-2 – – 0.044 – 

Maxpool-2 – – 0.014 – 
FC-1 26.71 287.28 – 269.13 

Relu-3 – – 0.012 – 
FC-2 19.52 78.74 – 75.39 

Relu-4 – – 0.005 – 
FC-3 19.61 7.24 – 10.65 

Softmax – – 0.025 – 
Total 2384.95 3688.4 0.25 2454.35 

 
Using the packing and unpacking methods, the homomorphic evaluation on the cloud is 

not the most time-consuming operation for classifying a single image, which accounts for 
28.78% of total computation overhead. In contrast, encryption and decryption take more time, 
which takes 27.96% and 43.25%, respectively. The computation overheads on the device, 
including ReLU, Maxpool, and Softmax, are the least time-consuming operations. It only 
accounts for nearly 0.01% of time cost. The time it takes for the LeHE4SCNN framework to 
predict a picture is about 8.53s. The prediction accuracy reaches 99%. 

Communication overheads: By the parameters selected above, each coefficient of the 
ciphertext polynomials requires 47 bits, since using compression and decompression functions, 
the actual space occupied by a coefficient of the ciphertext is 44 bit/8=5.5 bytes(B). 

In the Conv-1 layer, D packs eight columns of the extended matrix into a polynomial for 
solving eight inner products at a time. Hence, 14× 7=98 ciphertexts are needed to pass to the 
cloud. Since one plaintext polynomial corresponds to three ciphertexts, the total message 
delivered to the cloud is 98× 1024× 5.5× 3 bits or 1617KB. After the cloud completes the 
homomorphic matrix-matrix multiplications, the result costs 2× 14× 7× 1024× 7.875× 3B, 
where 63

2 2q ≈ , make up 7.875B, and the filter matrix is packed into two ciphertexts, so it 
requires 4630.5KB in total. 

In the Conv-2 layer, the input image size is 6× 14× 14. D transforms it into an extended 



4358                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

matrix with stride (2, 2) and packs every four columns of the extended matrix into a polynomial, 
so the size of the matrix plaintext to be encrypted is 4× 4. Since each polynomial is encrypted 
into one ciphertext, the total space required is 264KB. After homomorphic multiplication 
calculations, the ciphertext size obtained by the cloud is 16 × 4 × 4 bytes, and the 
communication overhead transmitted by the cloud to the device is 6048KB. 
 

Table 3. Communication Overheads of the CNN on each image of dataset MNIST (KB) 
Layers Device → Cloud Cloud → Device Total of each layer 
Conv-1 1617 4630.50 6247.50 
Conv-2 264 6048 6312 
FC-1 16.50 945.2 961.7 
FC-2 16.50 259.93 276.43 
FC-3 16.50 23.63 40.13 
Total 1930.5 11907.26 13837.76KB ≈ 13.51MB 

 
In the subsequent three FC layers, the input is encrypted into one ciphertext, occupying a 

space of 16.5KB. Through homomorphic multiplication, the cloud generates 40 ciphertexts in 
the FC-1 layer, 11 ciphertexts in the FC-2 layer, and one ciphertext in the FC-3 layer, 
respectively, the corresponding communication overheads sent by the device to the cloud are 
945.2KB, 259.93KB, and 23.63KB. Table 3 presents the communication overhead of using 
the compression and decompression functions. The size of the message sent by the device to 
the cloud is 1930.5KB, the size of the message sent by the cloud to the device is 11647KB, 
and the total overhead is 13837.76KB or 13.51MB. 

5.3 Comparison with Previous Work in MCC 
In this part, we test the performance of LeHE4SCNN in the MCC environment, compared with 
several previous solutions. We are mainly concerned with the response time and usage cost of 
LeHE4SCNN compared to other competitors since both are two key indexes to reflect the 
users’ satisfaction on service, which directly affect the DLaaS service widespread applications 
in MCC. We conduct comparisons based on two published and more complex CNNs used for 
privacy prediction tasks. 

CNN-A: 1-Conv and 2-FC layers with ReLU activation from [12][16]. 
CNN-B: 2-Conv and 2-FC layers with ReLU activation and Maxpool from [18]. 
Communication overhead: Fig. 2 is the communication overhead of different solutions 

on dataset MNIST. We observe that compared to the other mix-protocol-based solutions (e.g., 
MiniONN, GAZELLE), LeHE4SCNN enjoys the lowest bandwidth cost either in CNN-A or 
CNN-B. As shown in Fig. 2(a), DeepSecure requires a bandwidth cost of 791 MB to classify 
one image from the MNIST dataset, which is 262×  than that of LeHE4SCNN. One of the 
main reasons for this performance gap is that DeepSecure is one of the secure two-party 
computation-based solutions, which requires extensive communication overhead performing 
secure privacy-preserving prediction. GAZELLE takes 70MB to finish one image 
classification in CNN-B. Compared to it, LeHE4SCNN still enjoys a lower bandwidth with 
only 15.4MB. The possible inner reasons are that GAZELLE employs the RLWE based HE 
scheme to secure the linear operations, which may lead to a high expansion rate of the 
ciphertext. LeHE4SCNN uses the proposed LeHE scheme to secure the linear operations, 
which has the advantage of a low expansion rate. Furthermore, GAZELLE requires several 
rounds of interaction between user and server to finish a non-linear operation, increasing 
communication cost. Whereas LeHE4SCNN adopts the data shuffling method to achieve the 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4359 

non-linear operation with one round of interaction per layer. 
 

 
(a) Results in CNN-A             (b) Results in CNN-B 

    Fig. 2. Communication overhead comparison of different solutions on MNIST.  
 

Response time analysis in MCC: For MCC, response time is a pivotal index to evaluate 
the quality of DLaaS services. The response time is defined as the duration time between the 
request the mobile device user sends and the result the user receives from the cloud server. 
Thus, the response time is the sum result of computation time and transmission time. Assume 
that the global average mobile data transfer speed is 54.53Mb/s (this data is collected from the 
website speedtest3 reported in August 2021). Fig. 3 shows  
the results. From Fig. 3(b), GAZELLE takes the lowest computation time of 0.81s to perform 
an image classification task, compared to the other solutions. However, GAZELLE also 
spends considerable time on the data transmission (10.27s). Thus LeHE4SCNN enjoys a lower 
response time than the other frameworks. It indicates that the communication overhead is a 
dominant factor to impact the quality of mobile service because the mobile data transfer speed 
is usually unstable and limited to network load and the location. Therefore, it demonstrates 
that our proposed LeHE4SCNN is a practical solution in the MCC environment. 

Cost analysis in MCC: The usage cost of the cloud-based services in the MCC 
environment comprises service fees and data transfer fees. For the DLaaS services, billed per 
query becomes an increasingly popular pay mode, no matter what services framework they 
used, so the data transfer cost is the critical factor in determining the usage cost of different 
solutions. 

In this experiment, we employ the wireless data-only plan of AT&A as the data transfer 
charging standard. The total amount of this plan is $50 with 25 GB and $10 per 2 GB for the 
overage part4. Table 4 indicates a comparison of transfer fees in usage cost with different 
privacy-preserving solutions on CNN-B. The third column shows the transfer fees per query 
using different solutions, and the fourth column shows the usage cost per query when overage. 
The fifth column is the maximum number of queries allowed supported in the plan. We can 
observe that compared to other solutions, LeHE4SCNN can support about 1662 queries at 
most in the plan, which is 4×  than that of the best-known solutions (i.e., FALCON). 
Therefore, it demonstrates that LeHE4SCNN is a cost-effective solution in the MCC 
environment. For example, the proposed framework can provide early warning services of 
emergencies for the elderly who suffer from chronic diseases and whose health conditions 
require continuous monitoring. Especially during the COVID-19 epidemic, many suspected 

 
 
 
3 https://www.speedtest.net/global-index 
4 https://www.att.com/support/article/wireless/KM1048698/ 

791

12.9
8

3.02

1

2

4

8

16

32

64

128

256

512

1024

2048

C
om

un
ic

at
io

n 
C

os
t(M

B)

 DeepSecure
 Chameleon
 GAZELLE
 LeHE4SCNN

CNN-A

657.5
501

70

15.4

1

2

4

8

16

32

64

128

256

512

1024

C
om

m
un

ic
at

io
n 

C
os

t(M
B)

 MiniONN
 ExPC
 GAZELLE
 LeHE4SCNN

 CNN-B



4360                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

patients are isolated at home, and they need to monitor their health conditions at all times and 
frequently send inquiries to determine whether they have suffered pneumonia. In that case, the 
framework we have presented is one of the best alternatives, as it can obtain multiple query 
services at a small cost to users. 
 

 
(a) Results in CNN-A   (b) Results in CNN-B 

Fig. 3. Response time comparison of different solutions on MNIST. 
 

Table 4. Data transfer cost of different solutions in the MCC environment 

Frameworks 
Communicatio
n overhead per 

query (MB) 

Cost per 
query in the 

plan ($) 

Cost per 
query out of 
the plan ($) 

Number of queries 
supported in the 

plan 
MiniONN 657.5 1.28 3.21 39 
GAZELLE 70 0.14 0.34 357 
FALCON 62.1 0.12 0.30 412 

LeHE4SCNN 15.4 0.03 0.08 1662 

6. Conclusion 
The emerging topic of privacy-preserving deep learning as a service has attracted increasing 
attention in recent years. This study focuses on constructing the low communication and cost-
efficient framework for secure convolutional neural network prediction in the mobile cloud 
computing environment. The increased communication overhead can be accomplished with 
more bandwidth consumption, leading to the extra cost for mobile users. Thus, the 
communication cost of privacy-preserving solutions is a crucial factor affecting their 
widespread applications in the MCC environment. To address it, we first propose the LeHE 
with the novel packing and unpacking methods to support the fast vector-matrix homomorphic 
operations. The apparent advantage of LeHE is that it can effectively bound the expansion 
ratio of the generated ciphertext. We also give the bound of accumulated noise, correctness, 
and security analysis. Finally, we present LeHE4SCNN, a privacy-preserving and 
communication-efficient framework for the convolutional neural network prediction task. 
LeHE4SCNN applies a judicious combination of LeHE and data shuffling methods to obtain 
low communication costs. Extensive experiments on the real network show that LeHE4SCNN 
achieves better response time and usage cost than the state-of-the-art methods in the mobile 
cloud computing environment. The subsequent work will study how to remove semi-honest 
assumptions so that the service framework can resist malicious attacks from internal 
participants and external attackers to expand the application scenarios. 
 

DeepSecure Chemelemon GAZELLE LeHE4SCNN
0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

R
es

po
ns

e 
tim

e(
s)

CNN-A

 Communication time
 Computation time

125.72

4.59

1.37 1.35

MiniONN ExPC GAZELLE LeHE4SCNN
0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

R
es

po
ns

e 
tim

e(
s)

CNN-B

 Communication time
 Computation time

105.78
78.6

11.08 8.16



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4361 

Acknowledgement 
This work was supported in parts by the National Key Research and Development Project 
(2020YFA0712303), in parts by Chongqing Research Program (cstc2019yszx-jcyjX0003, 
cstc2020yszx-jcyjX0005, cstc2021yszx-jcyjX0004), in parts by Guizhou Science and 
Technology Program ([2020]4Y056). in parts by National Natural Science Foundation of 
China (11771421), in parts by Youth Innovation Promotion Association of CAS (2018419). 

References 
[1] D. Shen, G. Wu, and H.-Il. Suk, “Deep learning in medical image analysis,” Annual review of 

biomedical engineering, vol. 19, pp. 221–248, 2017. Article (CrossRef Link) 
[2] M. Tavana, A.-R. Abtahi, D. Di Caprio, and M. Poortarigh, “An artificial neural network and 

bayesian network model for liquidity risk assessment in banking,” Neurocomputing, vol. 275, pp. 
2525–2554, 2018. Article (CrossRef Link) 

[3] W. Zheng, L. Yan, C. Gou, and F.-Y. Wang, “Fighting fire with fire: A spatial–frequency ensemble 
relation network with generative adversarial learning for adversarial image classification,” 
International Journal of Intelligent Systems, vol. 36, no. 5, pp. 2081–2121, 2021.  
Article (CrossRef Link) 

[4] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing: A survey,” Future 
generation computer systems, vol. 29, no. 1, pp. 84–106, 2013. Article (CrossRef Link) 

[5] B. Zhou and R. Buyya, “Augmentation techniques for mobile cloud computing: A taxonomy, 
survey, and future directions,” ACM Computing Surveys (CSUR), vol. 51, no. 1, pp. 1–38, 2019. 
Article (CrossRef Link) 

[6] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning as a service,” in Proc. of 
the IEEE 14th Intnational Conference. Machine Learning and Applications (ICMLA 2015), Miami, 
FL, USA, pp. 896–902, 2015. Article (CrossRef Link) 

[7] M. S. Riazi, B. D. Rouani, and F. Koushanfar, “Deep learning on private data,” IEEE Security & 
Privacy, vol. 17, no. 6, pp. 54–63, 2019. Article (CrossRef Link) 

[8] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Mobile cloud computing: Challenges and 
future research directions,” Journal of Network and Computer Applications, vol. 115, pp. 70–85, 
2018. Article (CrossRef Link) 

[9] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proc. of the forty-first annual 
ACM symposium on Theory of computing (STOC’09), Bethesda, MD, USA, pp.169–178, 2009. 
Article (CrossRef Link) 

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption 
without bootstrapping,” ACM Transactions on Computation Theory (TOCT 2014), vol. 6, no. 3, 
pp. 1–36, 2014. Article (CrossRef Link) 

[11] J. Fan and F. Vercauteren, “Somewhat practical fully homomorphic encryption,” IACR Cryptol. 
ePrint Arch., vol. 2012, pp. 144, 2012. 

[12] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and J. Wernsing, “Cryptonets: 
Applying neural networks to encrypted data with high throughput and accuracy,” in Proc. of the 
33rd International Conference machine learning(PMLR 2016), New York, NY, USA, pp. 201–
210, 2016. 

[13] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix computation and application 
to neural networks,” in Proc. of the 2018 ACM SIGSAC Conference on Computer and 
Communications Security (CCS 2018), Toronto, Canada, pp. 1209–1222, 2018.  
Article (CrossRef Link) 

[14]  E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-preserving machine learning 
as a service,” in Proc. of on Privacy Enhancing Technologies (PETS 2018), Barcelona, Spain, vol. 
2018, no. 3, pp. 123–142, 2018. Article (CrossRef Link) 

 

https://doi.org/10.1146/annurev-bioeng-071516-044442
https://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-071516-044442
https://www.annualreviews.org/doi/abs/10.1146/annurev-bioeng-071516-044442
https://doi.org/10.1016/j.neucom.2017.11.034
https://doi.org/10.1002/int.22372
https://doi.org/10.1016/j.future.2012.05.023
https://doi.org/10.1145/3152397
https://doi.org/10.1109/ICMLA.2015.152
https://doi.org/10.1109/MSEC.2019.2935666
https://doi.org/10.1016/j.jnca.2018.04.018
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/2633600
https://doi.org/10.1145/3243734.3243837
https://inspire.cse.unt.edu/sites/default/files/1.pdf


4362                                                                Bai et al.: Privacy-preserving and Communication-efficient Convolutional  
Neural Network Prediction Framework in Mobile Cloud Computing 

[15] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster cryptonets: Leveraging 
sparsity for real-world encrypted inference,” arXiv preprint arXiv:1811.09953, 2018. 

[16] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable provably-secure deep 
learning,” in Proc. of the 55th Annual Design Automation Conference. (DAC 2018), San Francisco, 
CA, USA, pp. 1–6, 2018. Article (CrossRef Link) 

[17] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushanfar, “XONN: Xnor-based 
oblivious deep neural network inference,” in Proc. of the 28th USENIX Security Symposium 
(USENIX Security 2019), Santa Clara, CA, USA, pp.1501–1518, 2019. 

[18] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network predictions via minionn 
transformations,” in Proc. of the 2017 ACM SIGSAC Conference on Computer and 
Communications Security (CCS 2017), Dallas Texas, USA, pp. 619–631, 2017.  
Article (CrossRef Link) 

[19] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider, and F. Koushanfar, 
“Chameleon: A hybrid secure computation framework for machine learning applications,” in Proc. 
of the 2018 on Asia Conference on Computer and Communications Security (ASIACCS 2018), 
Incheon, Korea, pp.707–721, 2018. Article (CrossRef Link) 

[20] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A low latency framework for 
secure neural network inference,” in Proc. of the 27th USENIX Security Symposium (USENIX 
Security 2018), Baltimore, MD, USA, pp.1651–1669, 2018. 

[21] S. Li, K. Xue, B. Zhu, C. Ding, X. Gao, D. Wei, and T. Wan, “Falcon: A fourier transform based 
approach for fast and secure convolutional neural network predictions,” in Proc. of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition (CVPR 2020), Virtual, pp. 8705–8714, 
2020. Article (CrossRef Link) 

[22] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa, “Delphi: A cryptographic 
inference service for neural networks,” in Proc. of the 29th USENIX Security Symposium (USENIX 
Security 2020), pp. 2505–2522, 2020. 

[23] C. Ke, W. Wu, and Y. Feng, “Low expansion rate encryption algorithm based on mlwe,” Computer 
Science, vol. 46, no. 4, pp. 144–150, 2019. Article (CrossRef Link) 

[24] N. P. Smart and F. Vercauteren, “Fully homomorphic SIMD operations,” Designs, codes and 
cryptography, vol. 71, no. 1, pp. 57–81, 2014. Article (CrossRef Link) 

[25] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for arithmetic of 
approximate numbers,” in Proc. of Conference on the Theory and Application of Cryptology and 
Information Security(Asiacrypt 2017), Hong Kong, China, pp. 409–437, 2017.  
Article (CrossRef Link) 

[26] A. Paverd, A. Martin, and I. Brown, “Modelling and automatically analysing privacy properties 
for honest-but-curious adversaries,” Univ. Oxford, Oxford, UK, Tech. Rep, 2014. 

 
 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.1145/3195970.3196023
https://doi.org/10.1145/3133956.3134056
https://dl.acm.org/doi/proceedings/10.1145/3196494
https://doi.org/10.1145/3196494.3196522
https://doi.org/10.1109/CVPR42600.2020.00873
https://doi.org/10.11896/j.issn.1002-137X.2019.04.023
https://doi.org/10.1007/s10623-012-9720-4
https://doi.org/10.1007/978-3-319-70694-8_15


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 12, December 2021                         4363 

Yanan Bai, received the M.S. degree in computer science from Guizhou University, 
Guizhou, China, in 2010. She joined the University of Ping dingshan, Henan, China, in 
2010. She is currently a Ph.D. candidate in computer science from the University of 
Chinese Academy of Sciences, Chongqing, China. Her research interests are information 
security and artificial intelligence. 
 
 
 
 

 
Yong Feng, born in 1965, Ph.D. supervisor, professor. Vice President of Chongqing 
society of electronics, chief scientist of automatic reasoning and its application in the 
field of high and new technology. His research interests are zero error calculation in 
automatic reasoning and information security. 
 
 
 
 
 
 
Wenyuan Wu, born in 1972. Ph.D. supervisor, professor. His main research interests 
include cryptography theory, symbolic computation, and zero error calculation, 
automated reasoning. 
 
 
 
 
 

 


