• 제목/요약/키워드: Low Reynolds Number Flow

검색결과 402건 처리시간 0.027초

패러글라이딩 헬멧의 항력 감소에 관한 실험적 연구 (Experimental study on the drag reduction of a helmet for paragliding)

  • 황종빈;박정목;송진석;김주하
    • 한국가시화정보학회지
    • /
    • 제19권3호
    • /
    • pp.46-53
    • /
    • 2021
  • In the present study, wind tunnel experiments were performed to reduce the drag of a paragliding helmet in the range of Reynolds numbers from 46,000 to 155,000. The drag force of the helmet model with dimples and deflectors installed was measured by varying the dimple depth and the slant angle of the deflector. The dimples were effective in reducing the drag at low Reynolds numbers, but no significant drag reduction was found in the Reynolds number range in which an actual paraglider flight takes place. On the other hand, the deflector installed tangentially to the side outline of the helmet showed an average drag reduction of 7% in the flight Reynolds number range of real paragliding. This was because the deflector shrunk the size of the wake region and moved the wake region downstream of the deflector.

저레이놀즈수 2차 모멘트 난류모형에 의한 정사각단면의 $180^{\circ}$ 곡덕트 난류유동의 수치해석 (Numerical computation of turbulent flow in a square sectioned $180^{\circ}$ bend by low-Reynolds-number second moment turbulence closure)

  • 신종근;최영돈
    • 대한기계학회논문집B
    • /
    • 제20권8호
    • /
    • pp.2650-2669
    • /
    • 1996
  • A new low Reynolds number nonlinear second moment turbulence closure was introduced to analyze a square sectioned 180.deg. bend flow. Inclusion of nonlinear return to isotropy term and cubic mean pressure strain term has brought out a marked improvement in the level of agreement with measured velocity profiles. Optimization of present closure was performed by comparison of computed velocity profiles with the experimental ones with variation of nonlinear return to isotropy term and quadratic and cubic pressure-strain model. Progressive vortex breakdown due to the interaction of primary and secondary flows was well captured by using the optimized second moment turbulence closure.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II) (Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow-)

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.

오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석 (Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring)

  • 맹주성;양시영;서현철
    • 대한기계학회논문집
    • /
    • 제17권9호
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.

난류박리 및 재부착 유동에 대한 저레이놀즈수 비선형 열전달 모형의 개발 (A Non-linear Low-Reynolds-Number Heat Transfer Model for Turbulent Separated and Reattaching Flows)

  • 리광훈;성형진
    • 대한기계학회논문집B
    • /
    • 제24권2호
    • /
    • pp.316-323
    • /
    • 2000
  • A nonlinear low-Reynolds-number heat transfer model is developed to predict turbulent flow and heat transfer in separated and reattaching flows. The $k-{\varepsilon}-f_{\mu}$ model of Park and Sung (1997) is extended to a nonlinear formulation, based on the nonlinear model of Gatski and Speziale (1993). The limiting near-wall behavior is resolved by solving the $f_{\mu}$ elliptic relaxation equation. An improved explicit algebraic heat transfer model is proposed, which is achieved by applying a matrix inversion. The scalar heat fluxes are not aligned with the mean temperature gradients in separated and reattaching flows; a full diffusivity tensor model is required. The near-wall asymptotic behavior is incorporated into the $f_{\lambda}$ function in conjunction with the $f_{\mu}$ elliptic relaxation equation. Predictions of the present model are cross-checked with existing measurements and DNS data. The model preformance is shown to be satisfactory.

저 레이놀즈 수 유동장에서의 유연 익형에 대한 연구 (Study on Flexible Airfoil in Low Reynolds Number Flow Field)

  • 권기범
    • 한국항공우주학회지
    • /
    • 제31권3호
    • /
    • pp.1-7
    • /
    • 2003
  • 본 연구에서는 저 레이놀즈 수 유동장에서 유연 익형의 공탄성적 거동과 공기 역학적 성능이 평가되었다. 유연 익형은 비정상 유동장에서 저 레이놀즈 수 익형으로 흔히 사용되는 CLARK-Y 익형 윗면의 일정부분에 질량이 없는 박막을 장착하여 모델링 하였다. 박막의 거동은 공기역학적 힘과 박막의 평형 방정식에 의해 지배되며 평형 방정식의 무차원화로부터 유동과 박막간의 상호작용을 나타내는 무차원 변수가 도출되며 이 무처원 변수가 박막의 거동에 큰 영향을 미친다. 박막의 분포를 익형 윗면의 지정된 지점에서부터 뒷전까지 분포시키되 지정된 박막 분포의 시작점을 변화시켜가며 각 박막 분포에서 박막의 공탄성적 거동을 지배하는 무차원 변수에 대해 공기역학적 성능의 최적화를 수행하였다. 그 결과 박막 분포의 시작점이 뒷전으로 이동할수록 무차원 변수는 거의 선형적으로 증가해야함을 알 수 있었다.

Reynolds 수에 따른 꺾어진 덕트에서 열/물질전달 특성 고찰 (Effects of Reynolds Number on Flow and Heat/Mass Characteristics Inside the Wavy Duct)

  • 장인혁;황상동;조형희
    • 설비공학논문집
    • /
    • 제15권10호
    • /
    • pp.809-820
    • /
    • 2003
  • The present study investigates effects of flow velocity on the convective heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewall are determined by using a naphthalene sublimation technique. The flow visualization technique is used to understand the overall flow structures inside the duct. The aspect ratio and corrugation angle of the wavy duct is fixed at 7.3 and 145$^{\circ}$ respectively, and the Reynolds numbers, based on the duct hydraulic diameter, vary from 100 to 5,000. The results show that there exist complex secondary flows and transfer processes resulting in non-uniform distributions of the heat/mass transfer coefficients on the duct side walls. At low Re (Re<1000), relatively high heat/mass transfer regions like cell shape appear on both pressure and suction side wall due to the secondary vortex flows called Taylor-Gortler vortices perpendicular to the main flow direction. However, at high Re (Re>1000), these secondary flow cells disappear and boundary layer type flow characteristics are observed on pressure side wall and high heat/mass transfer region by the flow reattachment appears on the suction side wall. The average heat/mass transfer coefficients are higher than those of the smooth circular duct due to the secondary flows inside wavy duct. And also friction factors are about two times greater than those of the smooth circular duct.

고점성 밀봉제 인쇄용 마이크로 노즐 설계를 위한 유동해석 (NUMERICAL INVESTIGATION OF THE FLOW IN A MICRONOZZLE FOR DISPENSING A HIGHLY VISCOUS SEALNT)

  • 박규진;곽호상;손병철;김경진
    • 한국전산유체공학회지
    • /
    • 제12권4호
    • /
    • pp.54-60
    • /
    • 2007
  • A theoretical and numerical investigation is performed on the flow in a micronozzle for precision-controlled sealant dispenser. The working fluid is a highly viscous epoxy used as sealant in producing LCD panels, which contains a number of tiny solid spacers. Flow analysis is conducted in order to achieve the optimal design of internal geometry of a nozzle. A simplified design analysis methodology is proposed for predicting the flow in the nozzle based on the assumption that the Reynolds number is much less than O(1). The parallel numerical computations are performed by using a CFD package FLUENT. Comparison discloses that the theoretical model gives a good prediction on the distribution of pressure and wall shear stress in the nozzle. However, the theoretical model has a difficulty in predicting the maximum wall shear stress as found in a limited region near edge by numerical computation. The theoretical and numerical simulations provide the good guideline for designing a dispensing micronozzle.

냉각수의 유동속도와 온도가 담금효과에 미치는 영향 (The influence of flow rate and temperature on the quenching effect of cooling water)

  • 민수홍;김상열
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.24-39
    • /
    • 1982
  • It has already been known that quenching effect is influenced greatly by stirring and changing coolant's temperature on quenching. But according to the past investigations its effect has not been taken into consideration quantitatively in the cooling process. The purpose of this study is that the influence of flow rate and temperature on the quenching effect of cooling water as quenching medium is quantitatively examined by using the open channel. The stream of water in this study is turbulent flow. The temperature of the specimen made of pure copper is measured by CA thermocouple in the vicinity of the surface and recorded by an automatic recorder during the quenching process in city water. The results obtained are as follows; 1. The quenching effect of cooling water generally increases with Reynolds Number(characteristic length; specimen diameter)as shown in the experimental formula; but at the realm of Reynolds Number from 1.2 * 10$^{4}$ to 9.2 * 10$^{4}$, the increasing rate of quenching effect shows little increase. 2. The increasing rate of quenching effect was increased under the flow rate of 221 cm/sec. On the other hand, it was decreased below this flow rate. 3. The quenching effect was influenced by the water temperature and the flow rate. But it was rather dependent upon the former than the latter. 4. Although the quenching effect appeared loosely in the water temperature of 50.deg. C, it was shown that the quenching effect increased in the low flow rate of 31 cm/sec. comparing with the still water. 5. It is desirable to design the quenching system to be over 1.2 * 10$^{4}$ in Reynolds Number or over, 3000$cm^{-1}$ / in V/v in order to increase the quenching effect of the system using open channel.annel.

  • PDF

음속 노즐의 임계 압력비에 대한 저 레이놀즈수의 영향 (Evaluation of Critical Pressure Ratios Sonic Nozzle at Low Reynolds Numbers)

  • 최용문;박경암;차지선;최해만;윤복현
    • 대한기계학회논문집B
    • /
    • 제24권11호
    • /
    • pp.1535-1539
    • /
    • 2000
  • A sonic nozzle is used as a reference flow meter in the area of gas flow rate measurement. The critical pressure ratio of sonic nozzle is an important factor in maintaining its operating condition. ISO9300 suggested the critical pressure ratio of sonic nozzle as a function of area ratio. In this study, 13 sonic nozzles were made by the design of ISC9300 with different half diffuser angles of 2。 to 8。 and throat diameters of 0.28 to 4.48 mm. The test results of half diffuser angles below 8。 ar quite similar to those of ISO9300. On the other hand, the critical pressure ratio for the nozzle of 8。 decreases by 5.5% in comparison with ISO9300. However, ISO9300 does not predict the critical pressure ratio at lower Reynolds numbers than 10(sup)5. Therefore, it is found that it is a better way for the flow of low Reynolds number to express the critical pressure ratio of sonic nozzle as a function of Reynolds number than area ratios. A correlation equation of critical pressure is introduced with uncertainty $\pm$3.2 % at 95% confidence level.