• Title/Summary/Keyword: Lotka-Volterra

Search Result 49, Processing Time 0.021 seconds

On the Dynamics of Multi-Dimensional Lotka-Volterra Equations

  • Abe, Jun;Matsuoka, Taiju;Kunimatsu, Noboru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1623-1628
    • /
    • 2004
  • In the 3-dimensional cyclic Lotka-Volterra equations, we show the solution on the invariant hyperplane. In addition, we show the existence of the invariant hyperplane by the center manifold theorem under the some conditions. With this result, we can lead the hyperplane of the n-dimensional cyclic Lotka-Volterra equaions. In other section, we study the 3- or 4-dimensional Hamiltonian Lotka-Volterra equations which satisfy the Jacobi identity. We analyze the solution of the Hamiltonian Lotka- Volterra equations with the functions called the split Liapunov functions by [4], [5] since they provide the Liapunov functions for each region separated by the invariant hyperplane. In the cyclic Lotka-Volterra equations, the role of the Liapunov functions is the same in the odd and even dimension. However, in the Hamiltonian Lotka-Volterra equations, we can show the difference of the role of the Liapunov function between the odd and the even dimension by the numerical calculation. In this paper, we regard the invariant hyperplane as the important item to analyze the motion of Lotka-Volterra equations and occur the chaotic orbit. Furtheremore, an example of the asymptoticaly stable and stable solution of the 3-dimensional cyclic Lotka-Volterra equations, 3- and 4-dimensional Hamiltonian equations are shown.

  • PDF

Automorphisms of Lotka-Volterra algebras

  • Yoon, Suk-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The purpose of this paper is to give a characterization of automorphisms of the weighted Lotka-Volterra algebra $(A,\omega)$ at idempotent elements and to offer a condition that $(A,\omege)$ becomes a Jordan algebra.

  • PDF

Coexistence in competitive Lotka-volterra systems

  • Kim, Jung-Gi
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.147-151
    • /
    • 1996
  • In this paper we consider n-species autonomous competitive Lotka-Volterra systems. We exhibit here simple algebraic criteria on the parameters which guarantee the coexistence of all the species.

  • PDF

DYNAMICS OF AN IMPULSIVE FOOD CHAIN SYSTEM WITH A LOTKA-VOLTERRA FUNCTIONAL RESPONSE

  • Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.139-151
    • /
    • 2008
  • We investigate a three species food chain system with Lotka-Volterra type functional response and impulsive perturbations. We find a condition for the local stability of prey or predator free periodic solutions by applying the Floquet theory and the comparison theorems and show the boundedness of this system. Furthermore, we illustrate some examples.

  • PDF

IDEMPOTENT ELEMENTS IN THE LOTKA-VOLTERRA ALGEBRA

  • Yoon, Suk-Im
    • Communications of the Korean Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.123-131
    • /
    • 1995
  • The notion of our non-associative algebra is obtained from the Lotka-Volterra system of differential equation describing competitiion between animals or vegetals species and also in the kinetic theory of gasses. For the structure of an algebra, the existence of idempotents is of particular interest. But also from the biological aspect the existence of such elements is of interest because the equilibria of a population which can be described by an algebra correspond to idempotents of this algebra. Thus we present some properties of the general natures for a Lotka-Volterra algebra associated to a weight function and idempotents elements.

  • PDF

THE ASYMPTOTIC STABILITY BEHAVIOR IN A LOTKA-VOLTERRA TYPE PREDATOR-PREY SYSTEM

  • Ko, Youn-Hee
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.3
    • /
    • pp.575-587
    • /
    • 2006
  • In this paper, we provide 3 detailed and explicit procedure of obtaining some regions of attraction for the positive steady state (assumed to exist) of a well known Lotka-Volterra type predator-prey system. Also we obtain the sufficient conditions to ensure that the positive equilibrium point of a well known Lotka-Volterra type predator-prey system with a single discrete delay is globally asymptotically stable.

STABILITY AND BIFURCATION ANALYSIS OF A LOTKA-VOLTERRA MODEL WITH TIME DELAYS

  • Xu, Changjin;Liao, Maoxin
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.1-22
    • /
    • 2011
  • In this paper, a Lotka-Volterra model with time delays is considered. A set of sufficient conditions for the existence of Hopf bifurcation are obtained via analyzing the associated characteristic transcendental equation. Some explicit formulae for determining the stability and the direction of the Hopf bifurcation periodic solutions bifurcating from Hopf bifurcations are obtained by applying the normal form method and center manifold theory. Finally, the main results are illustrated by some numerical simulations.

QUALITATIVE ANALYSIS OF A LOTKA-VOLTERRA TYPE IMPULSIVE PREDATOR-PREY SYSTEM WITH SEASONAL EFFECTS

  • Baek, Hun-Ki
    • Honam Mathematical Journal
    • /
    • v.30 no.3
    • /
    • pp.521-533
    • /
    • 2008
  • We investigate a periodically forced Lotka-Volterra type predator-prey system with impulsive perturbations - seasonal effects on the prey, periodic releasing of natural enemies(predator) and spraying pesticide at the same fixed times. We show that the solutions of the system are bounded using the comparison theorems and find conditions for the stability of a stable prey-free solution and for the permanence of the system.

Application of Model of Plant Population Structure and Phenotypic Divergence

  • Huh, Man-Kyu
    • Journal of Environmental Science International
    • /
    • v.20 no.2
    • /
    • pp.155-161
    • /
    • 2011
  • In application and discussion of population structure and phenotypic divergence in plant community, the classic Lotka-Volterra models of competition and spatial model are conceived as a mechanism that is composed by multiple interacting processes. Both the Lotka-Volterra and spatial simulation formulae predict that species diversity increases with genotypic richness (GR). The two formulae are also in agreement that species diversity generally decreases within increasing niche breadth (NB) and increases with increasing potential genotypic range (PGR). Across the entire parameter space in the Lotka-Volterra model and most of the parameter space in the spatial simulations, variance in community composition decreased with increasing genotypic richness. This was, in large part, a consequence of selecting genotypes randomly from a set pool.