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AUTOMORPHISMS OF
LOTKA-VOLTERRA ALGEBRASY

Suk IM YoON

ABSTRACT. The purpose of this paper is to give a characterization of
automorphisms of the weighted Lotka-Volterra algebra (A,w) at idem-
potent elements and to offer a condition that (A w) becomes a Jordan
algebra.

1. Introduction and Preliminaries

Let K be a field A a commutative, not necessarily associative K-
algebra. Recall that an algebra A over K is baric if it admits a nontrivial
algebra homomorphism w : A — K, which is equivalent to say that, if
there exists a surjective homomorphism w : A — K. The homomor-
phism w is called the weight function or weight homomorphism Suppose
that A is finite dimensional and B = {e;, e, ,e,} is a basis of A over
.

If (a;;) 1s an anti-symmetric matrix with n rows and n columns where
the entries a;; are in the field K of characteristic not 2, then we can
associate to this matrix a commutative K -algebra A of dimension n
with the multiplication

1 1
€€ = (5 +aij)€i + (-2- ‘+‘aji)6j (6,0 =1,2,-+-,n)

relative to the basis B = {ey, €3, - ,e,}. From the definition of multi-
plication, it can be easily seen that e;e; = eje;, €;% = ¢; and ei(ejex) #
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(eiej)er for 4,7,k =1,2,--- ,n. Such a commutative, nonassociative K-
algebra A is called Lotka- Volterra algebra associated to the matriz (a;;)-
It is not difficult to show that the K-linear mapping w : 4 — K defined
by w(e;) =1 (i = 1,2,--- ,n) is a weight function of A and the baric
algebra (A4,w) is a Lotka-Volterra algebra. We call also that (A,w) is a
Lotka-Volterra algebra associated to the matriz (a,;). Under the multi-
plication of the Lotka-Volterra algebra (A, w), we can easily sce that the
following holds.

n n
ProrosITION 1.1. For ¢ = Z Aie; and y = Z uiei( A, pi, € K) in
=1 =
1 n
(A,), we have zy = Z(w(e)y +w(y)e) + 3 (hior(y) + pusws(2))es, whe
1=1
ere w; : A — K is defined by the K -linear mapping e; ai; (1,7 =
1,2,--- ,n).

To study the idempotent elements of an algebra A of dimension n > 1

n
2
1s to find a condition on z; € K(: = 1,2,--- ,n) such that (inei) =
i=1

n n 2
Zx,-e,-, le., xy = .’Ek(Z(l + 2a]'k).7:]‘) .
=1 =1

]:
Since it can be rewritten by

xk(;(uza,-k)zj ~1) =0 (k=12 n),

and each of this quadratic is the intersection of two planes of equation

zy = 0 and of equation Z(l +2+ajip)z; —1 =0, the study of idem-
=1
potent elements is reducejd to solve the 2" systems of n linear equations
with n unknowns.
From [9] and [13] , letting A the anti-symmetric matrix associated to
the Lotka-Volterra K-algebra A, A;; the (i, j)-minor of A, A; the (i,7)-
minor of A and Pf(A) the Phaffian of A with size n [5]. we have the

following,.
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LEMMA 1.2. det(A;;) = PF(A)PF(A;) (i=1,2,-- ,n).

PRrooOF. This lemma is clear if 7 = j.

Let : # 7 and V be a vector space over K of dimension 2k + 1. If
B € A’V* and E, F are two distinct hyperplanes of V. Then we have a
K-linear mapping Ug p : E — F* defined by Uy p(2)(y) = B'(z,y) =
B(z,y) for any 2 € E and y € F, where By = B|g, By = Bl|p and
B' = B|lgxp : E x F — K. Hence this lemma can be obtained from
A¥Upp = Pf(Bg) ® Pf(Br), where Pf(Br) € A?*E* Pf(Bfr) €
A F* and A?*Up p € Homi(AN2F*) v AZFE* (9 A2FE™,

LEMMA 1.3. If n is even, then det(A;;) = Pf(A)Pf(Ai ;) (0,7 =
1,---,n), where A(; ;) is a submatrix of A by deleting n — ¢ rows and
n — j columns from A.

PrROOF. Since this lemma means that /\”_IUEYF = Pf(By) ® Pf
(Bgnr) and from the exact sequence 0 — ENF — EGQF — V — 0,
we have A" E* @ ATTIF* = ATVFQ ATVTHENF).

THEOREM 1.4. In a Lotka-Volterra algebra A, the idempotent ele-
ments are as follows :

D) = — (1) Pf(A) ; (t=1,2,---,n) ifnisodd,
> (=17 P f(ax)
=1
Y (=1 Pf(Ay)

i) xi:JZI BFA) (:=1,2,---,n) ifn is even.

COROLLARY 1.5. In a Lotka-Volterra algebra A, there are exactly 2"
idempotent elements.

2. The structure of Auty (A, w).

Since the Lotka-Volterra algebra A has 2" idempotent elements, we
can say that there exists a homomorphism of groups Autg(A) — San
defined by 0 — &|1gemp(4), Where Szn is the symmetric group of 2" letters
and Idemp(A) is the set of all idempotent elements of A. In particular,
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since the elements of the basis B = {e1,¢e2, - , £, } are idempotent, such
homommorphism is injective.

Let Idempg(A,w) and Idemp;(A4,w) be the set of all idempotent el-
ements of (A,w) which has its weight 0 and 1, respectively. Then, in
general, there exists 2"~! idempotent elements of each spaces and all au-
tomorphims of A permutes between the idempotent elements of weight
0 and that of weight 1.

THEOREM 2.1. In a Lotka-Volterra algebra (A.w), if an automor-
phism o in Auty(A,w) leaves all idempotent elements of weight 0 fixed,
then o = 1(4 ..

1
= 2n—l

o 1 ,
ProoFr. To show it if f = Fn T Z e, then o(f)
e€ldemp1(A,w)

Z o(e) = f for all o in Autg(4,w) and o(f) = 1. Using
e€ldemp; (A,w)

1 , .

the fact that w(f) = T Z w(e) =1, we have a Peirce de-
ecldemp; (A,w)

composition of A in direct sum of K-vector spaces as follows : A =

K f @ Ker(w). Consequently, if an automorphism o in Autx(4,w) leaves

all elements of Idempg(A,w) fixed, then it leaves also the basis 2;—32(61 —

e}, - 3o —(e1 — en) of Ker(w) fixed. So, we have 7 = 1(A,u)-
COROLLARY 2.2. Let K be a field of characteristic not 2 and (4,w) a

Lotka-Volterra I-algebra of dimension n. If the weight homomorphism

w 1s unique, then there exists an injective homomorphism of groups

AUtA'(A) S Szn‘l —1-

PRrROOF. If we defined a mapping Autg(A,w) —= Syn-1_, by 0 —
Olldemo(A)—{O}v then by theorem 2.1, we have the required result.

THEOREM 2.3. Let K be a field of characteristic not 2 and let (a;;) be
an anti-symmetric matrix with coefficients in K. If A is a Lotka-Volterra
algebra associated to the matrix (a;;), then the following conditions are
equivalent :

i) A is a Jordan algebra.

i) If aj; = % and ajg = %, then a;; = -;-
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PROOF. i) = ii). Let B be a subalgebra of A generated by {e;, ej,e}.
Then the multiplication allows us that B is not a power-associative al-
gebra if ii) does not hold. Since it is known that any Jordan algebra
is power-associative [12], if i) is not hold, then (A4,w) is not a Jordan
algebra.

i) => i). Since the condition ii) implies that e;e; = emin(2, )

(1,7 =1,2,--- ,n),(A,w) is an associative algebra.

EXAMPLE 2.4. Counsider the Lotka-Volterra algebra A of dimension

2 2
0
1

o

3 with a basis B = {e;,ej,ex}. Assume that the matrix

Ot

]
2
i
. . 2 2 LT
1s associated to the Lotka-Volterra algebra. Then we have the multipli-
cation as follow :

ejey = ( :1+(“*012)€2

e1e3 = ( +a13)61+(*—a13)€3
1 1
€€y = (5 + a23)F2 + (— - 023)63

+
S
=
S
—
o

Under these multiplication, we can see that (x?)? # z* for a vector
z = ey — eg + e3. Therefore, A is not power-associative and not a Jordan
algebra.
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